tomaarsen HF Staff commited on
Commit
1c4db27
·
verified ·
1 Parent(s): a977b9e

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
2_CSRSparsity/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"input_dim": 768, "hidden_dim": 3072, "k": 256, "k_aux": 512, "normalize": false, "dead_threshold": 30}
2_CSRSparsity/model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3dcc951374b07cc3b2651c4ccd400b2b2c19c63b35ee7891d3e0ba835fe13a4
3
+ size 9477512
README.md ADDED
@@ -0,0 +1,1867 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - generated_from_trainer
9
+ - dataset_size:99000
10
+ - loss:CSRLoss
11
+ base_model: microsoft/mpnet-base
12
+ widget:
13
+ - source_sentence: what is the difference between uae and saudi arabia
14
+ sentences:
15
+ - 'Monopoly Junior Players take turns in order, with the initial player determined
16
+ by age before the game: the youngest player goes first. Players are dealt an initial
17
+ amount Monopoly money depending on the total number of players playing: 20 in
18
+ a two-player game, 18 in a three-player game or 16 in a four-player game. A typical
19
+ turn begins with the rolling of the die and the player advancing their token clockwise
20
+ around the board the corresponding number of spaces. When the player lands on
21
+ an unowned space they must purchase the space from the bank for the amount indicated
22
+ on the board, and places a sold sign on the coloured band at the top of the space
23
+ to denote ownership. If a player lands on a space owned by an opponent the player
24
+ pays the opponent rent in the amount written on the board. If the opponent owns
25
+ both properties of the same colour the rent is doubled.'
26
+ - Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi Arabia
27
+ continue to take somewhat differing stances on regional conflicts such the Yemeni
28
+ Civil War, where the UAE opposes Al-Islah, and supports the Southern Movement,
29
+ which has fought against Saudi-backed forces, and the Syrian Civil War, where
30
+ the UAE has disagreed with Saudi support for Islamist movements.[4]
31
+ - Governors of states of India The governors and lieutenant-governors are appointed
32
+ by the President for a term of five years.
33
+ - source_sentence: who came up with the seperation of powers
34
+ sentences:
35
+ - Separation of powers Aristotle first mentioned the idea of a "mixed government"
36
+ or hybrid government in his work Politics where he drew upon many of the constitutional
37
+ forms in the city-states of Ancient Greece. In the Roman Republic, the Roman Senate,
38
+ Consuls and the Assemblies showed an example of a mixed government according to
39
+ Polybius (Histories, Book 6, 11–13).
40
+ - Economy of New Zealand New Zealand's diverse market economy has a sizable service
41
+ sector, accounting for 63% of all GDP activity in 2013.[17] Large scale manufacturing
42
+ industries include aluminium production, food processing, metal fabrication, wood
43
+ and paper products. Mining, manufacturing, electricity, gas, water, and waste
44
+ services accounted for 16.5% of GDP in 2013.[17] The primary sector continues
45
+ to dominate New Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17]
46
+ - John Dalton John Dalton FRS (/ˈdɔːltən/; 6 September 1766 – 27 July 1844) was
47
+ an English chemist, physicist, and meteorologist. He is best known for proposing
48
+ the modern atomic theory and for his research into colour blindness, sometimes
49
+ referred to as Daltonism in his honour.
50
+ - source_sentence: who was the first president of indian science congress meeting
51
+ held in kolkata in 1914
52
+ sentences:
53
+ - Nobody to Blame "Nobody to Blame" is a song recorded by American country music
54
+ artist Chris Stapleton. The song was released in November 2015 as the singer's
55
+ third single overall. Stapleton co-wrote the song with Barry Bales and Ronnie
56
+ Bowman. It became Stapleton's first top 10 single on the US Country Airplay chart.[2]
57
+ "Nobody to Blame" won Song of the Year at the ACM Awards.[3]
58
+ - Indian Science Congress Association The first meeting of the congress was held
59
+ from 15–17 January 1914 at the premises of the Asiatic Society, Calcutta. Honorable
60
+ justice Sir Ashutosh Mukherjee, the then Vice Chancellor of the University of
61
+ Calcutta presided over the Congress. One hundred and five scientists from different
62
+ parts of India and abroad attended it. Altogether 35 papers under 6 different
63
+ sections, namely Botany, Chemistry, Ethnography, Geology, Physics and Zoology
64
+ were presented.
65
+ - New Soul "New Soul" is a song by the French-Israeli R&B/soul singer Yael Naïm,
66
+ from her self-titled second album. The song gained popularity in the United States
67
+ following its use by Apple in an advertisement for their MacBook Air laptop. In
68
+ the song Naïm sings of being a new soul who has come into the world to learn "a
69
+ bit 'bout how to give and take." However, she finds that things are harder than
70
+ they seem. The song, also featured in the films The House Bunny and Wild Target,
71
+ features a prominent "la la la la" section as its hook. It remains Naïm's biggest
72
+ hit single in the U.S. to date, and her only one to reach the Top 40 of the Billboard
73
+ Hot 100.
74
+ - source_sentence: who wrote get over it by the eagles
75
+ sentences:
76
+ - Get Over It (Eagles song) "Get Over It" is a song by the Eagles released as a
77
+ single after a fourteen-year breakup. It was also the first song written by bandmates
78
+ Don Henley and Glenn Frey when the band reunited. "Get Over It" was played live
79
+ for the first time during their Hell Freezes Over tour in 1994. It returned the
80
+ band to the U.S. Top 40 after a fourteen-year absence, peaking at No. 31 on the
81
+ Billboard Hot 100 chart. It also hit No. 4 on the Billboard Mainstream Rock Tracks
82
+ chart. The song was not played live by the Eagles after the "Hell Freezes Over"
83
+ tour in 1994. It remains the group's last Top 40 hit in the U.S.
84
+ - Pokhran-II In 1980, the general elections marked the return of Indira Gandhi and
85
+ the nuclear program began to gain momentum under Ramanna in 1981. Requests for
86
+ additional nuclear tests were continued to be denied by the government when Prime
87
+ Minister Indira Gandhi saw Pakistan began exercising the brinkmanship, though
88
+ the nuclear program continued to advance.[7] Initiation towards hydrogen bomb
89
+ began as well as the launch of the missile programme began under Late president
90
+ Dr. Abdul Kalam, who was then an aerospace engineer.[7]
91
+ - R. Budd Dwyer Robert Budd Dwyer (November 21, 1939 – January 22, 1987) was the
92
+ 30th State Treasurer of the Commonwealth of Pennsylvania. He served from 1971
93
+ to 1981 as a Republican member of the Pennsylvania State Senate representing the
94
+ state's 50th district. He then served as the 30th Treasurer of Pennsylvania from
95
+ January 20, 1981, until his death. On January 22, 1987, Dwyer called a news conference
96
+ in the Pennsylvania state capital of Harrisburg where he killed himself in front
97
+ of the gathered reporters, by shooting himself in the mouth with a .357 Magnum
98
+ revolver.[4] Dwyer's suicide was broadcast later that day to a wide television
99
+ audience across Pennsylvania.
100
+ - source_sentence: who is cornelius in the book of acts
101
+ sentences:
102
+ - Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It
103
+ was included on Clapton's 1977 album Slowhand. Clapton wrote the song about Pattie
104
+ Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit
105
+ (then Marcy Levy) and Yvonne Elliman.
106
+ - Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their
107
+ head of story.[1] There he worked on all of their films produced up to 2006; this
108
+ included Toy Story (for which he received an Academy Award nomination) and A Bug's
109
+ Life, as the co-story writer and others as story supervisor. His final film was
110
+ Cars. He also voiced characters in many of the films, including Heimlich the caterpillar
111
+ in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in
112
+ Finding Nemo.[1]
113
+ - 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who
114
+ is considered by Christians to be one of the first Gentiles to convert to the
115
+ faith, as related in Acts of the Apostles.'
116
+ datasets:
117
+ - sentence-transformers/natural-questions
118
+ pipeline_tag: sentence-similarity
119
+ library_name: sentence-transformers
120
+ metrics:
121
+ - cosine_accuracy@1
122
+ - cosine_accuracy@3
123
+ - cosine_accuracy@5
124
+ - cosine_accuracy@10
125
+ - cosine_precision@1
126
+ - cosine_precision@3
127
+ - cosine_precision@5
128
+ - cosine_precision@10
129
+ - cosine_recall@1
130
+ - cosine_recall@3
131
+ - cosine_recall@5
132
+ - cosine_recall@10
133
+ - cosine_ndcg@10
134
+ - cosine_mrr@10
135
+ - cosine_map@100
136
+ co2_eq_emissions:
137
+ emissions: 113.44094173179047
138
+ energy_consumed: 0.29184553136281904
139
+ source: codecarbon
140
+ training_type: fine-tuning
141
+ on_cloud: false
142
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
143
+ ram_total_size: 31.777088165283203
144
+ hours_used: 0.773
145
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
146
+ model-index:
147
+ - name: SparseEncoder based on microsoft/mpnet-base
148
+ results:
149
+ - task:
150
+ type: sparse-information-retrieval
151
+ name: Sparse Information Retrieval
152
+ dataset:
153
+ name: NanoMSMARCO 16
154
+ type: NanoMSMARCO_16
155
+ metrics:
156
+ - type: cosine_accuracy@1
157
+ value: 0.1
158
+ name: Cosine Accuracy@1
159
+ - type: cosine_accuracy@3
160
+ value: 0.26
161
+ name: Cosine Accuracy@3
162
+ - type: cosine_accuracy@5
163
+ value: 0.36
164
+ name: Cosine Accuracy@5
165
+ - type: cosine_accuracy@10
166
+ value: 0.5
167
+ name: Cosine Accuracy@10
168
+ - type: cosine_precision@1
169
+ value: 0.1
170
+ name: Cosine Precision@1
171
+ - type: cosine_precision@3
172
+ value: 0.08666666666666666
173
+ name: Cosine Precision@3
174
+ - type: cosine_precision@5
175
+ value: 0.07200000000000001
176
+ name: Cosine Precision@5
177
+ - type: cosine_precision@10
178
+ value: 0.05000000000000001
179
+ name: Cosine Precision@10
180
+ - type: cosine_recall@1
181
+ value: 0.1
182
+ name: Cosine Recall@1
183
+ - type: cosine_recall@3
184
+ value: 0.26
185
+ name: Cosine Recall@3
186
+ - type: cosine_recall@5
187
+ value: 0.36
188
+ name: Cosine Recall@5
189
+ - type: cosine_recall@10
190
+ value: 0.5
191
+ name: Cosine Recall@10
192
+ - type: cosine_ndcg@10
193
+ value: 0.272077335852507
194
+ name: Cosine Ndcg@10
195
+ - type: cosine_mrr@10
196
+ value: 0.20234920634920633
197
+ name: Cosine Mrr@10
198
+ - type: cosine_map@100
199
+ value: 0.21758364304569
200
+ name: Cosine Map@100
201
+ - task:
202
+ type: sparse-information-retrieval
203
+ name: Sparse Information Retrieval
204
+ dataset:
205
+ name: NanoNFCorpus 16
206
+ type: NanoNFCorpus_16
207
+ metrics:
208
+ - type: cosine_accuracy@1
209
+ value: 0.08
210
+ name: Cosine Accuracy@1
211
+ - type: cosine_accuracy@3
212
+ value: 0.14
213
+ name: Cosine Accuracy@3
214
+ - type: cosine_accuracy@5
215
+ value: 0.24
216
+ name: Cosine Accuracy@5
217
+ - type: cosine_accuracy@10
218
+ value: 0.32
219
+ name: Cosine Accuracy@10
220
+ - type: cosine_precision@1
221
+ value: 0.08
222
+ name: Cosine Precision@1
223
+ - type: cosine_precision@3
224
+ value: 0.05999999999999999
225
+ name: Cosine Precision@3
226
+ - type: cosine_precision@5
227
+ value: 0.08
228
+ name: Cosine Precision@5
229
+ - type: cosine_precision@10
230
+ value: 0.05
231
+ name: Cosine Precision@10
232
+ - type: cosine_recall@1
233
+ value: 0.005993249911183041
234
+ name: Cosine Recall@1
235
+ - type: cosine_recall@3
236
+ value: 0.009403252754209558
237
+ name: Cosine Recall@3
238
+ - type: cosine_recall@5
239
+ value: 0.013285393478414642
240
+ name: Cosine Recall@5
241
+ - type: cosine_recall@10
242
+ value: 0.01646720008819819
243
+ name: Cosine Recall@10
244
+ - type: cosine_ndcg@10
245
+ value: 0.06095056479011788
246
+ name: Cosine Ndcg@10
247
+ - type: cosine_mrr@10
248
+ value: 0.14072222222222222
249
+ name: Cosine Mrr@10
250
+ - type: cosine_map@100
251
+ value: 0.015310893897400863
252
+ name: Cosine Map@100
253
+ - task:
254
+ type: sparse-information-retrieval
255
+ name: Sparse Information Retrieval
256
+ dataset:
257
+ name: NanoNQ 16
258
+ type: NanoNQ_16
259
+ metrics:
260
+ - type: cosine_accuracy@1
261
+ value: 0.18
262
+ name: Cosine Accuracy@1
263
+ - type: cosine_accuracy@3
264
+ value: 0.42
265
+ name: Cosine Accuracy@3
266
+ - type: cosine_accuracy@5
267
+ value: 0.54
268
+ name: Cosine Accuracy@5
269
+ - type: cosine_accuracy@10
270
+ value: 0.64
271
+ name: Cosine Accuracy@10
272
+ - type: cosine_precision@1
273
+ value: 0.18
274
+ name: Cosine Precision@1
275
+ - type: cosine_precision@3
276
+ value: 0.13999999999999999
277
+ name: Cosine Precision@3
278
+ - type: cosine_precision@5
279
+ value: 0.10800000000000003
280
+ name: Cosine Precision@5
281
+ - type: cosine_precision@10
282
+ value: 0.064
283
+ name: Cosine Precision@10
284
+ - type: cosine_recall@1
285
+ value: 0.18
286
+ name: Cosine Recall@1
287
+ - type: cosine_recall@3
288
+ value: 0.4
289
+ name: Cosine Recall@3
290
+ - type: cosine_recall@5
291
+ value: 0.5
292
+ name: Cosine Recall@5
293
+ - type: cosine_recall@10
294
+ value: 0.6
295
+ name: Cosine Recall@10
296
+ - type: cosine_ndcg@10
297
+ value: 0.3867151912670764
298
+ name: Cosine Ndcg@10
299
+ - type: cosine_mrr@10
300
+ value: 0.3266904761904762
301
+ name: Cosine Mrr@10
302
+ - type: cosine_map@100
303
+ value: 0.3250246379519026
304
+ name: Cosine Map@100
305
+ - task:
306
+ type: sparse-nano-beir
307
+ name: Sparse Nano BEIR
308
+ dataset:
309
+ name: NanoBEIR mean 16
310
+ type: NanoBEIR_mean_16
311
+ metrics:
312
+ - type: cosine_accuracy@1
313
+ value: 0.12
314
+ name: Cosine Accuracy@1
315
+ - type: cosine_accuracy@3
316
+ value: 0.2733333333333334
317
+ name: Cosine Accuracy@3
318
+ - type: cosine_accuracy@5
319
+ value: 0.38000000000000006
320
+ name: Cosine Accuracy@5
321
+ - type: cosine_accuracy@10
322
+ value: 0.48666666666666664
323
+ name: Cosine Accuracy@10
324
+ - type: cosine_precision@1
325
+ value: 0.12
326
+ name: Cosine Precision@1
327
+ - type: cosine_precision@3
328
+ value: 0.09555555555555555
329
+ name: Cosine Precision@3
330
+ - type: cosine_precision@5
331
+ value: 0.08666666666666668
332
+ name: Cosine Precision@5
333
+ - type: cosine_precision@10
334
+ value: 0.05466666666666667
335
+ name: Cosine Precision@10
336
+ - type: cosine_recall@1
337
+ value: 0.09533108330372768
338
+ name: Cosine Recall@1
339
+ - type: cosine_recall@3
340
+ value: 0.2231344175847365
341
+ name: Cosine Recall@3
342
+ - type: cosine_recall@5
343
+ value: 0.29109513115947155
344
+ name: Cosine Recall@5
345
+ - type: cosine_recall@10
346
+ value: 0.3721557333627327
347
+ name: Cosine Recall@10
348
+ - type: cosine_ndcg@10
349
+ value: 0.2399143639699004
350
+ name: Cosine Ndcg@10
351
+ - type: cosine_mrr@10
352
+ value: 0.22325396825396826
353
+ name: Cosine Mrr@10
354
+ - type: cosine_map@100
355
+ value: 0.18597305829833113
356
+ name: Cosine Map@100
357
+ - task:
358
+ type: sparse-information-retrieval
359
+ name: Sparse Information Retrieval
360
+ dataset:
361
+ name: NanoMSMARCO 32
362
+ type: NanoMSMARCO_32
363
+ metrics:
364
+ - type: cosine_accuracy@1
365
+ value: 0.18
366
+ name: Cosine Accuracy@1
367
+ - type: cosine_accuracy@3
368
+ value: 0.26
369
+ name: Cosine Accuracy@3
370
+ - type: cosine_accuracy@5
371
+ value: 0.36
372
+ name: Cosine Accuracy@5
373
+ - type: cosine_accuracy@10
374
+ value: 0.56
375
+ name: Cosine Accuracy@10
376
+ - type: cosine_precision@1
377
+ value: 0.18
378
+ name: Cosine Precision@1
379
+ - type: cosine_precision@3
380
+ value: 0.08666666666666666
381
+ name: Cosine Precision@3
382
+ - type: cosine_precision@5
383
+ value: 0.07200000000000001
384
+ name: Cosine Precision@5
385
+ - type: cosine_precision@10
386
+ value: 0.05600000000000001
387
+ name: Cosine Precision@10
388
+ - type: cosine_recall@1
389
+ value: 0.18
390
+ name: Cosine Recall@1
391
+ - type: cosine_recall@3
392
+ value: 0.26
393
+ name: Cosine Recall@3
394
+ - type: cosine_recall@5
395
+ value: 0.36
396
+ name: Cosine Recall@5
397
+ - type: cosine_recall@10
398
+ value: 0.56
399
+ name: Cosine Recall@10
400
+ - type: cosine_ndcg@10
401
+ value: 0.33109644128066057
402
+ name: Cosine Ndcg@10
403
+ - type: cosine_mrr@10
404
+ value: 0.2634444444444444
405
+ name: Cosine Mrr@10
406
+ - type: cosine_map@100
407
+ value: 0.27935469743863556
408
+ name: Cosine Map@100
409
+ - task:
410
+ type: sparse-information-retrieval
411
+ name: Sparse Information Retrieval
412
+ dataset:
413
+ name: NanoNFCorpus 32
414
+ type: NanoNFCorpus_32
415
+ metrics:
416
+ - type: cosine_accuracy@1
417
+ value: 0.14
418
+ name: Cosine Accuracy@1
419
+ - type: cosine_accuracy@3
420
+ value: 0.26
421
+ name: Cosine Accuracy@3
422
+ - type: cosine_accuracy@5
423
+ value: 0.28
424
+ name: Cosine Accuracy@5
425
+ - type: cosine_accuracy@10
426
+ value: 0.34
427
+ name: Cosine Accuracy@10
428
+ - type: cosine_precision@1
429
+ value: 0.14
430
+ name: Cosine Precision@1
431
+ - type: cosine_precision@3
432
+ value: 0.11333333333333333
433
+ name: Cosine Precision@3
434
+ - type: cosine_precision@5
435
+ value: 0.09600000000000002
436
+ name: Cosine Precision@5
437
+ - type: cosine_precision@10
438
+ value: 0.09
439
+ name: Cosine Precision@10
440
+ - type: cosine_recall@1
441
+ value: 0.007695869325666863
442
+ name: Cosine Recall@1
443
+ - type: cosine_recall@3
444
+ value: 0.012313937822266688
445
+ name: Cosine Recall@3
446
+ - type: cosine_recall@5
447
+ value: 0.01702903494334016
448
+ name: Cosine Recall@5
449
+ - type: cosine_recall@10
450
+ value: 0.024165659145052122
451
+ name: Cosine Recall@10
452
+ - type: cosine_ndcg@10
453
+ value: 0.10225707780728845
454
+ name: Cosine Ndcg@10
455
+ - type: cosine_mrr@10
456
+ value: 0.2055238095238095
457
+ name: Cosine Mrr@10
458
+ - type: cosine_map@100
459
+ value: 0.022577551502700435
460
+ name: Cosine Map@100
461
+ - task:
462
+ type: sparse-information-retrieval
463
+ name: Sparse Information Retrieval
464
+ dataset:
465
+ name: NanoNQ 32
466
+ type: NanoNQ_32
467
+ metrics:
468
+ - type: cosine_accuracy@1
469
+ value: 0.32
470
+ name: Cosine Accuracy@1
471
+ - type: cosine_accuracy@3
472
+ value: 0.46
473
+ name: Cosine Accuracy@3
474
+ - type: cosine_accuracy@5
475
+ value: 0.58
476
+ name: Cosine Accuracy@5
477
+ - type: cosine_accuracy@10
478
+ value: 0.68
479
+ name: Cosine Accuracy@10
480
+ - type: cosine_precision@1
481
+ value: 0.32
482
+ name: Cosine Precision@1
483
+ - type: cosine_precision@3
484
+ value: 0.15333333333333332
485
+ name: Cosine Precision@3
486
+ - type: cosine_precision@5
487
+ value: 0.11600000000000002
488
+ name: Cosine Precision@5
489
+ - type: cosine_precision@10
490
+ value: 0.068
491
+ name: Cosine Precision@10
492
+ - type: cosine_recall@1
493
+ value: 0.31
494
+ name: Cosine Recall@1
495
+ - type: cosine_recall@3
496
+ value: 0.42
497
+ name: Cosine Recall@3
498
+ - type: cosine_recall@5
499
+ value: 0.53
500
+ name: Cosine Recall@5
501
+ - type: cosine_recall@10
502
+ value: 0.63
503
+ name: Cosine Recall@10
504
+ - type: cosine_ndcg@10
505
+ value: 0.4603957123337682
506
+ name: Cosine Ndcg@10
507
+ - type: cosine_mrr@10
508
+ value: 0.4211904761904762
509
+ name: Cosine Mrr@10
510
+ - type: cosine_map@100
511
+ value: 0.41127594932176303
512
+ name: Cosine Map@100
513
+ - task:
514
+ type: sparse-nano-beir
515
+ name: Sparse Nano BEIR
516
+ dataset:
517
+ name: NanoBEIR mean 32
518
+ type: NanoBEIR_mean_32
519
+ metrics:
520
+ - type: cosine_accuracy@1
521
+ value: 0.21333333333333335
522
+ name: Cosine Accuracy@1
523
+ - type: cosine_accuracy@3
524
+ value: 0.32666666666666666
525
+ name: Cosine Accuracy@3
526
+ - type: cosine_accuracy@5
527
+ value: 0.4066666666666667
528
+ name: Cosine Accuracy@5
529
+ - type: cosine_accuracy@10
530
+ value: 0.5266666666666667
531
+ name: Cosine Accuracy@10
532
+ - type: cosine_precision@1
533
+ value: 0.21333333333333335
534
+ name: Cosine Precision@1
535
+ - type: cosine_precision@3
536
+ value: 0.11777777777777776
537
+ name: Cosine Precision@3
538
+ - type: cosine_precision@5
539
+ value: 0.09466666666666668
540
+ name: Cosine Precision@5
541
+ - type: cosine_precision@10
542
+ value: 0.07133333333333335
543
+ name: Cosine Precision@10
544
+ - type: cosine_recall@1
545
+ value: 0.16589862310855563
546
+ name: Cosine Recall@1
547
+ - type: cosine_recall@3
548
+ value: 0.23077131260742223
549
+ name: Cosine Recall@3
550
+ - type: cosine_recall@5
551
+ value: 0.30234301164778005
552
+ name: Cosine Recall@5
553
+ - type: cosine_recall@10
554
+ value: 0.4047218863816841
555
+ name: Cosine Recall@10
556
+ - type: cosine_ndcg@10
557
+ value: 0.29791641047390577
558
+ name: Cosine Ndcg@10
559
+ - type: cosine_mrr@10
560
+ value: 0.2967195767195767
561
+ name: Cosine Mrr@10
562
+ - type: cosine_map@100
563
+ value: 0.23773606608769968
564
+ name: Cosine Map@100
565
+ - task:
566
+ type: sparse-information-retrieval
567
+ name: Sparse Information Retrieval
568
+ dataset:
569
+ name: NanoMSMARCO 64
570
+ type: NanoMSMARCO_64
571
+ metrics:
572
+ - type: cosine_accuracy@1
573
+ value: 0.16
574
+ name: Cosine Accuracy@1
575
+ - type: cosine_accuracy@3
576
+ value: 0.38
577
+ name: Cosine Accuracy@3
578
+ - type: cosine_accuracy@5
579
+ value: 0.46
580
+ name: Cosine Accuracy@5
581
+ - type: cosine_accuracy@10
582
+ value: 0.6
583
+ name: Cosine Accuracy@10
584
+ - type: cosine_precision@1
585
+ value: 0.16
586
+ name: Cosine Precision@1
587
+ - type: cosine_precision@3
588
+ value: 0.12666666666666665
589
+ name: Cosine Precision@3
590
+ - type: cosine_precision@5
591
+ value: 0.09200000000000001
592
+ name: Cosine Precision@5
593
+ - type: cosine_precision@10
594
+ value: 0.06
595
+ name: Cosine Precision@10
596
+ - type: cosine_recall@1
597
+ value: 0.16
598
+ name: Cosine Recall@1
599
+ - type: cosine_recall@3
600
+ value: 0.38
601
+ name: Cosine Recall@3
602
+ - type: cosine_recall@5
603
+ value: 0.46
604
+ name: Cosine Recall@5
605
+ - type: cosine_recall@10
606
+ value: 0.6
607
+ name: Cosine Recall@10
608
+ - type: cosine_ndcg@10
609
+ value: 0.3545165496884908
610
+ name: Cosine Ndcg@10
611
+ - type: cosine_mrr@10
612
+ value: 0.27796031746031746
613
+ name: Cosine Mrr@10
614
+ - type: cosine_map@100
615
+ value: 0.29572845389453484
616
+ name: Cosine Map@100
617
+ - task:
618
+ type: sparse-information-retrieval
619
+ name: Sparse Information Retrieval
620
+ dataset:
621
+ name: NanoNFCorpus 64
622
+ type: NanoNFCorpus_64
623
+ metrics:
624
+ - type: cosine_accuracy@1
625
+ value: 0.18
626
+ name: Cosine Accuracy@1
627
+ - type: cosine_accuracy@3
628
+ value: 0.26
629
+ name: Cosine Accuracy@3
630
+ - type: cosine_accuracy@5
631
+ value: 0.32
632
+ name: Cosine Accuracy@5
633
+ - type: cosine_accuracy@10
634
+ value: 0.4
635
+ name: Cosine Accuracy@10
636
+ - type: cosine_precision@1
637
+ value: 0.18
638
+ name: Cosine Precision@1
639
+ - type: cosine_precision@3
640
+ value: 0.12666666666666665
641
+ name: Cosine Precision@3
642
+ - type: cosine_precision@5
643
+ value: 0.12
644
+ name: Cosine Precision@5
645
+ - type: cosine_precision@10
646
+ value: 0.088
647
+ name: Cosine Precision@10
648
+ - type: cosine_recall@1
649
+ value: 0.009483451025013268
650
+ name: Cosine Recall@1
651
+ - type: cosine_recall@3
652
+ value: 0.012904129822135095
653
+ name: Cosine Recall@3
654
+ - type: cosine_recall@5
655
+ value: 0.036867855927155205
656
+ name: Cosine Recall@5
657
+ - type: cosine_recall@10
658
+ value: 0.04756198673273659
659
+ name: Cosine Recall@10
660
+ - type: cosine_ndcg@10
661
+ value: 0.11496239522394665
662
+ name: Cosine Ndcg@10
663
+ - type: cosine_mrr@10
664
+ value: 0.24210317460317454
665
+ name: Cosine Mrr@10
666
+ - type: cosine_map@100
667
+ value: 0.0318282871881163
668
+ name: Cosine Map@100
669
+ - task:
670
+ type: sparse-information-retrieval
671
+ name: Sparse Information Retrieval
672
+ dataset:
673
+ name: NanoNQ 64
674
+ type: NanoNQ_64
675
+ metrics:
676
+ - type: cosine_accuracy@1
677
+ value: 0.44
678
+ name: Cosine Accuracy@1
679
+ - type: cosine_accuracy@3
680
+ value: 0.62
681
+ name: Cosine Accuracy@3
682
+ - type: cosine_accuracy@5
683
+ value: 0.68
684
+ name: Cosine Accuracy@5
685
+ - type: cosine_accuracy@10
686
+ value: 0.72
687
+ name: Cosine Accuracy@10
688
+ - type: cosine_precision@1
689
+ value: 0.44
690
+ name: Cosine Precision@1
691
+ - type: cosine_precision@3
692
+ value: 0.20666666666666667
693
+ name: Cosine Precision@3
694
+ - type: cosine_precision@5
695
+ value: 0.14
696
+ name: Cosine Precision@5
697
+ - type: cosine_precision@10
698
+ value: 0.07400000000000001
699
+ name: Cosine Precision@10
700
+ - type: cosine_recall@1
701
+ value: 0.42
702
+ name: Cosine Recall@1
703
+ - type: cosine_recall@3
704
+ value: 0.58
705
+ name: Cosine Recall@3
706
+ - type: cosine_recall@5
707
+ value: 0.64
708
+ name: Cosine Recall@5
709
+ - type: cosine_recall@10
710
+ value: 0.68
711
+ name: Cosine Recall@10
712
+ - type: cosine_ndcg@10
713
+ value: 0.561884513825323
714
+ name: Cosine Ndcg@10
715
+ - type: cosine_mrr@10
716
+ value: 0.5395555555555555
717
+ name: Cosine Mrr@10
718
+ - type: cosine_map@100
719
+ value: 0.5268055680783221
720
+ name: Cosine Map@100
721
+ - task:
722
+ type: sparse-nano-beir
723
+ name: Sparse Nano BEIR
724
+ dataset:
725
+ name: NanoBEIR mean 64
726
+ type: NanoBEIR_mean_64
727
+ metrics:
728
+ - type: cosine_accuracy@1
729
+ value: 0.26
730
+ name: Cosine Accuracy@1
731
+ - type: cosine_accuracy@3
732
+ value: 0.42
733
+ name: Cosine Accuracy@3
734
+ - type: cosine_accuracy@5
735
+ value: 0.48666666666666664
736
+ name: Cosine Accuracy@5
737
+ - type: cosine_accuracy@10
738
+ value: 0.5733333333333334
739
+ name: Cosine Accuracy@10
740
+ - type: cosine_precision@1
741
+ value: 0.26
742
+ name: Cosine Precision@1
743
+ - type: cosine_precision@3
744
+ value: 0.15333333333333332
745
+ name: Cosine Precision@3
746
+ - type: cosine_precision@5
747
+ value: 0.11733333333333335
748
+ name: Cosine Precision@5
749
+ - type: cosine_precision@10
750
+ value: 0.074
751
+ name: Cosine Precision@10
752
+ - type: cosine_recall@1
753
+ value: 0.19649448367500444
754
+ name: Cosine Recall@1
755
+ - type: cosine_recall@3
756
+ value: 0.32430137660737834
757
+ name: Cosine Recall@3
758
+ - type: cosine_recall@5
759
+ value: 0.3789559519757184
760
+ name: Cosine Recall@5
761
+ - type: cosine_recall@10
762
+ value: 0.4425206622442455
763
+ name: Cosine Recall@10
764
+ - type: cosine_ndcg@10
765
+ value: 0.3437878195792535
766
+ name: Cosine Ndcg@10
767
+ - type: cosine_mrr@10
768
+ value: 0.35320634920634914
769
+ name: Cosine Mrr@10
770
+ - type: cosine_map@100
771
+ value: 0.2847874363869911
772
+ name: Cosine Map@100
773
+ - task:
774
+ type: sparse-information-retrieval
775
+ name: Sparse Information Retrieval
776
+ dataset:
777
+ name: NanoMSMARCO 128
778
+ type: NanoMSMARCO_128
779
+ metrics:
780
+ - type: cosine_accuracy@1
781
+ value: 0.2
782
+ name: Cosine Accuracy@1
783
+ - type: cosine_accuracy@3
784
+ value: 0.34
785
+ name: Cosine Accuracy@3
786
+ - type: cosine_accuracy@5
787
+ value: 0.46
788
+ name: Cosine Accuracy@5
789
+ - type: cosine_accuracy@10
790
+ value: 0.68
791
+ name: Cosine Accuracy@10
792
+ - type: cosine_precision@1
793
+ value: 0.2
794
+ name: Cosine Precision@1
795
+ - type: cosine_precision@3
796
+ value: 0.11333333333333333
797
+ name: Cosine Precision@3
798
+ - type: cosine_precision@5
799
+ value: 0.09200000000000001
800
+ name: Cosine Precision@5
801
+ - type: cosine_precision@10
802
+ value: 0.068
803
+ name: Cosine Precision@10
804
+ - type: cosine_recall@1
805
+ value: 0.2
806
+ name: Cosine Recall@1
807
+ - type: cosine_recall@3
808
+ value: 0.34
809
+ name: Cosine Recall@3
810
+ - type: cosine_recall@5
811
+ value: 0.46
812
+ name: Cosine Recall@5
813
+ - type: cosine_recall@10
814
+ value: 0.68
815
+ name: Cosine Recall@10
816
+ - type: cosine_ndcg@10
817
+ value: 0.4022072447482653
818
+ name: Cosine Ndcg@10
819
+ - type: cosine_mrr@10
820
+ value: 0.31815873015873014
821
+ name: Cosine Mrr@10
822
+ - type: cosine_map@100
823
+ value: 0.33230553462724927
824
+ name: Cosine Map@100
825
+ - task:
826
+ type: sparse-information-retrieval
827
+ name: Sparse Information Retrieval
828
+ dataset:
829
+ name: NanoNFCorpus 128
830
+ type: NanoNFCorpus_128
831
+ metrics:
832
+ - type: cosine_accuracy@1
833
+ value: 0.14
834
+ name: Cosine Accuracy@1
835
+ - type: cosine_accuracy@3
836
+ value: 0.34
837
+ name: Cosine Accuracy@3
838
+ - type: cosine_accuracy@5
839
+ value: 0.38
840
+ name: Cosine Accuracy@5
841
+ - type: cosine_accuracy@10
842
+ value: 0.52
843
+ name: Cosine Accuracy@10
844
+ - type: cosine_precision@1
845
+ value: 0.14
846
+ name: Cosine Precision@1
847
+ - type: cosine_precision@3
848
+ value: 0.16666666666666663
849
+ name: Cosine Precision@3
850
+ - type: cosine_precision@5
851
+ value: 0.128
852
+ name: Cosine Precision@5
853
+ - type: cosine_precision@10
854
+ value: 0.11399999999999999
855
+ name: Cosine Precision@10
856
+ - type: cosine_recall@1
857
+ value: 0.0036955722371344803
858
+ name: Cosine Recall@1
859
+ - type: cosine_recall@3
860
+ value: 0.021194355136532755
861
+ name: Cosine Recall@3
862
+ - type: cosine_recall@5
863
+ value: 0.024553995602026958
864
+ name: Cosine Recall@5
865
+ - type: cosine_recall@10
866
+ value: 0.043293677887263404
867
+ name: Cosine Recall@10
868
+ - type: cosine_ndcg@10
869
+ value: 0.12666378888376595
870
+ name: Cosine Ndcg@10
871
+ - type: cosine_mrr@10
872
+ value: 0.2537936507936508
873
+ name: Cosine Mrr@10
874
+ - type: cosine_map@100
875
+ value: 0.03330968914510828
876
+ name: Cosine Map@100
877
+ - task:
878
+ type: sparse-information-retrieval
879
+ name: Sparse Information Retrieval
880
+ dataset:
881
+ name: NanoNQ 128
882
+ type: NanoNQ_128
883
+ metrics:
884
+ - type: cosine_accuracy@1
885
+ value: 0.38
886
+ name: Cosine Accuracy@1
887
+ - type: cosine_accuracy@3
888
+ value: 0.56
889
+ name: Cosine Accuracy@3
890
+ - type: cosine_accuracy@5
891
+ value: 0.7
892
+ name: Cosine Accuracy@5
893
+ - type: cosine_accuracy@10
894
+ value: 0.8
895
+ name: Cosine Accuracy@10
896
+ - type: cosine_precision@1
897
+ value: 0.38
898
+ name: Cosine Precision@1
899
+ - type: cosine_precision@3
900
+ value: 0.18666666666666665
901
+ name: Cosine Precision@3
902
+ - type: cosine_precision@5
903
+ value: 0.14400000000000002
904
+ name: Cosine Precision@5
905
+ - type: cosine_precision@10
906
+ value: 0.08199999999999999
907
+ name: Cosine Precision@10
908
+ - type: cosine_recall@1
909
+ value: 0.35
910
+ name: Cosine Recall@1
911
+ - type: cosine_recall@3
912
+ value: 0.53
913
+ name: Cosine Recall@3
914
+ - type: cosine_recall@5
915
+ value: 0.66
916
+ name: Cosine Recall@5
917
+ - type: cosine_recall@10
918
+ value: 0.76
919
+ name: Cosine Recall@10
920
+ - type: cosine_ndcg@10
921
+ value: 0.5527057053472701
922
+ name: Cosine Ndcg@10
923
+ - type: cosine_mrr@10
924
+ value: 0.5072460317460317
925
+ name: Cosine Mrr@10
926
+ - type: cosine_map@100
927
+ value: 0.4846991157483792
928
+ name: Cosine Map@100
929
+ - task:
930
+ type: sparse-nano-beir
931
+ name: Sparse Nano BEIR
932
+ dataset:
933
+ name: NanoBEIR mean 128
934
+ type: NanoBEIR_mean_128
935
+ metrics:
936
+ - type: cosine_accuracy@1
937
+ value: 0.24
938
+ name: Cosine Accuracy@1
939
+ - type: cosine_accuracy@3
940
+ value: 0.4133333333333334
941
+ name: Cosine Accuracy@3
942
+ - type: cosine_accuracy@5
943
+ value: 0.5133333333333333
944
+ name: Cosine Accuracy@5
945
+ - type: cosine_accuracy@10
946
+ value: 0.6666666666666666
947
+ name: Cosine Accuracy@10
948
+ - type: cosine_precision@1
949
+ value: 0.24
950
+ name: Cosine Precision@1
951
+ - type: cosine_precision@3
952
+ value: 0.15555555555555553
953
+ name: Cosine Precision@3
954
+ - type: cosine_precision@5
955
+ value: 0.12133333333333335
956
+ name: Cosine Precision@5
957
+ - type: cosine_precision@10
958
+ value: 0.08800000000000001
959
+ name: Cosine Precision@10
960
+ - type: cosine_recall@1
961
+ value: 0.1845651907457115
962
+ name: Cosine Recall@1
963
+ - type: cosine_recall@3
964
+ value: 0.2970647850455109
965
+ name: Cosine Recall@3
966
+ - type: cosine_recall@5
967
+ value: 0.381517998534009
968
+ name: Cosine Recall@5
969
+ - type: cosine_recall@10
970
+ value: 0.4944312259624211
971
+ name: Cosine Recall@10
972
+ - type: cosine_ndcg@10
973
+ value: 0.3605255796597671
974
+ name: Cosine Ndcg@10
975
+ - type: cosine_mrr@10
976
+ value: 0.35973280423280424
977
+ name: Cosine Mrr@10
978
+ - type: cosine_map@100
979
+ value: 0.2834381131735789
980
+ name: Cosine Map@100
981
+ - task:
982
+ type: sparse-information-retrieval
983
+ name: Sparse Information Retrieval
984
+ dataset:
985
+ name: NanoMSMARCO 256
986
+ type: NanoMSMARCO_256
987
+ metrics:
988
+ - type: cosine_accuracy@1
989
+ value: 0.26
990
+ name: Cosine Accuracy@1
991
+ - type: cosine_accuracy@3
992
+ value: 0.48
993
+ name: Cosine Accuracy@3
994
+ - type: cosine_accuracy@5
995
+ value: 0.52
996
+ name: Cosine Accuracy@5
997
+ - type: cosine_accuracy@10
998
+ value: 0.68
999
+ name: Cosine Accuracy@10
1000
+ - type: cosine_precision@1
1001
+ value: 0.26
1002
+ name: Cosine Precision@1
1003
+ - type: cosine_precision@3
1004
+ value: 0.15999999999999998
1005
+ name: Cosine Precision@3
1006
+ - type: cosine_precision@5
1007
+ value: 0.10400000000000001
1008
+ name: Cosine Precision@5
1009
+ - type: cosine_precision@10
1010
+ value: 0.068
1011
+ name: Cosine Precision@10
1012
+ - type: cosine_recall@1
1013
+ value: 0.26
1014
+ name: Cosine Recall@1
1015
+ - type: cosine_recall@3
1016
+ value: 0.48
1017
+ name: Cosine Recall@3
1018
+ - type: cosine_recall@5
1019
+ value: 0.52
1020
+ name: Cosine Recall@5
1021
+ - type: cosine_recall@10
1022
+ value: 0.68
1023
+ name: Cosine Recall@10
1024
+ - type: cosine_ndcg@10
1025
+ value: 0.4651758219790261
1026
+ name: Cosine Ndcg@10
1027
+ - type: cosine_mrr@10
1028
+ value: 0.39804761904761904
1029
+ name: Cosine Mrr@10
1030
+ - type: cosine_map@100
1031
+ value: 0.412474140043243
1032
+ name: Cosine Map@100
1033
+ - task:
1034
+ type: sparse-information-retrieval
1035
+ name: Sparse Information Retrieval
1036
+ dataset:
1037
+ name: NanoNFCorpus 256
1038
+ type: NanoNFCorpus_256
1039
+ metrics:
1040
+ - type: cosine_accuracy@1
1041
+ value: 0.18
1042
+ name: Cosine Accuracy@1
1043
+ - type: cosine_accuracy@3
1044
+ value: 0.28
1045
+ name: Cosine Accuracy@3
1046
+ - type: cosine_accuracy@5
1047
+ value: 0.38
1048
+ name: Cosine Accuracy@5
1049
+ - type: cosine_accuracy@10
1050
+ value: 0.5
1051
+ name: Cosine Accuracy@10
1052
+ - type: cosine_precision@1
1053
+ value: 0.18
1054
+ name: Cosine Precision@1
1055
+ - type: cosine_precision@3
1056
+ value: 0.14666666666666667
1057
+ name: Cosine Precision@3
1058
+ - type: cosine_precision@5
1059
+ value: 0.14
1060
+ name: Cosine Precision@5
1061
+ - type: cosine_precision@10
1062
+ value: 0.114
1063
+ name: Cosine Precision@10
1064
+ - type: cosine_recall@1
1065
+ value: 0.005516710448516594
1066
+ name: Cosine Recall@1
1067
+ - type: cosine_recall@3
1068
+ value: 0.011401609103753301
1069
+ name: Cosine Recall@3
1070
+ - type: cosine_recall@5
1071
+ value: 0.021271103372355084
1072
+ name: Cosine Recall@5
1073
+ - type: cosine_recall@10
1074
+ value: 0.0347182833647384
1075
+ name: Cosine Recall@10
1076
+ - type: cosine_ndcg@10
1077
+ value: 0.12628863554710404
1078
+ name: Cosine Ndcg@10
1079
+ - type: cosine_mrr@10
1080
+ value: 0.2575
1081
+ name: Cosine Mrr@10
1082
+ - type: cosine_map@100
1083
+ value: 0.033728487141126466
1084
+ name: Cosine Map@100
1085
+ - task:
1086
+ type: sparse-information-retrieval
1087
+ name: Sparse Information Retrieval
1088
+ dataset:
1089
+ name: NanoNQ 256
1090
+ type: NanoNQ_256
1091
+ metrics:
1092
+ - type: cosine_accuracy@1
1093
+ value: 0.42
1094
+ name: Cosine Accuracy@1
1095
+ - type: cosine_accuracy@3
1096
+ value: 0.58
1097
+ name: Cosine Accuracy@3
1098
+ - type: cosine_accuracy@5
1099
+ value: 0.68
1100
+ name: Cosine Accuracy@5
1101
+ - type: cosine_accuracy@10
1102
+ value: 0.76
1103
+ name: Cosine Accuracy@10
1104
+ - type: cosine_precision@1
1105
+ value: 0.42
1106
+ name: Cosine Precision@1
1107
+ - type: cosine_precision@3
1108
+ value: 0.19333333333333333
1109
+ name: Cosine Precision@3
1110
+ - type: cosine_precision@5
1111
+ value: 0.14
1112
+ name: Cosine Precision@5
1113
+ - type: cosine_precision@10
1114
+ value: 0.08
1115
+ name: Cosine Precision@10
1116
+ - type: cosine_recall@1
1117
+ value: 0.4
1118
+ name: Cosine Recall@1
1119
+ - type: cosine_recall@3
1120
+ value: 0.54
1121
+ name: Cosine Recall@3
1122
+ - type: cosine_recall@5
1123
+ value: 0.64
1124
+ name: Cosine Recall@5
1125
+ - type: cosine_recall@10
1126
+ value: 0.73
1127
+ name: Cosine Recall@10
1128
+ - type: cosine_ndcg@10
1129
+ value: 0.5611650669716552
1130
+ name: Cosine Ndcg@10
1131
+ - type: cosine_mrr@10
1132
+ value: 0.5226904761904763
1133
+ name: Cosine Mrr@10
1134
+ - type: cosine_map@100
1135
+ value: 0.5086922580864135
1136
+ name: Cosine Map@100
1137
+ - task:
1138
+ type: sparse-nano-beir
1139
+ name: Sparse Nano BEIR
1140
+ dataset:
1141
+ name: NanoBEIR mean 256
1142
+ type: NanoBEIR_mean_256
1143
+ metrics:
1144
+ - type: cosine_accuracy@1
1145
+ value: 0.2866666666666667
1146
+ name: Cosine Accuracy@1
1147
+ - type: cosine_accuracy@3
1148
+ value: 0.4466666666666666
1149
+ name: Cosine Accuracy@3
1150
+ - type: cosine_accuracy@5
1151
+ value: 0.5266666666666667
1152
+ name: Cosine Accuracy@5
1153
+ - type: cosine_accuracy@10
1154
+ value: 0.6466666666666667
1155
+ name: Cosine Accuracy@10
1156
+ - type: cosine_precision@1
1157
+ value: 0.2866666666666667
1158
+ name: Cosine Precision@1
1159
+ - type: cosine_precision@3
1160
+ value: 0.16666666666666666
1161
+ name: Cosine Precision@3
1162
+ - type: cosine_precision@5
1163
+ value: 0.128
1164
+ name: Cosine Precision@5
1165
+ - type: cosine_precision@10
1166
+ value: 0.08733333333333333
1167
+ name: Cosine Precision@10
1168
+ - type: cosine_recall@1
1169
+ value: 0.22183890348283888
1170
+ name: Cosine Recall@1
1171
+ - type: cosine_recall@3
1172
+ value: 0.3438005363679178
1173
+ name: Cosine Recall@3
1174
+ - type: cosine_recall@5
1175
+ value: 0.3937570344574517
1176
+ name: Cosine Recall@5
1177
+ - type: cosine_recall@10
1178
+ value: 0.48157276112157943
1179
+ name: Cosine Recall@10
1180
+ - type: cosine_ndcg@10
1181
+ value: 0.3842098414992618
1182
+ name: Cosine Ndcg@10
1183
+ - type: cosine_mrr@10
1184
+ value: 0.3927460317460318
1185
+ name: Cosine Mrr@10
1186
+ - type: cosine_map@100
1187
+ value: 0.31829829509026103
1188
+ name: Cosine Map@100
1189
+ ---
1190
+
1191
+ # SparseEncoder based on microsoft/mpnet-base
1192
+
1193
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
1194
+
1195
+ ## Model Details
1196
+
1197
+ ### Model Description
1198
+ - **Model Type:** Sentence Transformer
1199
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
1200
+ - **Maximum Sequence Length:** 512 tokens
1201
+ - **Output Dimensionality:** 768 dimensions
1202
+ - **Similarity Function:** Cosine Similarity
1203
+ - **Training Dataset:**
1204
+ - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions)
1205
+ - **Language:** en
1206
+ <!-- - **License:** Unknown -->
1207
+
1208
+ ### Model Sources
1209
+
1210
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
1211
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
1212
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
1213
+
1214
+ ### Full Model Architecture
1215
+
1216
+ ```
1217
+ SparseEncoder(
1218
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
1219
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
1220
+ (2): CSRSparsity({'input_dim': 768, 'hidden_dim': 3072, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30})
1221
+ )
1222
+ ```
1223
+
1224
+ ## Usage
1225
+
1226
+ ### Direct Usage (Sentence Transformers)
1227
+
1228
+ First install the Sentence Transformers library:
1229
+
1230
+ ```bash
1231
+ pip install -U sentence-transformers
1232
+ ```
1233
+
1234
+ Then you can load this model and run inference.
1235
+ ```python
1236
+ from sentence_transformers import SentenceTransformer
1237
+
1238
+ # Download from the 🤗 Hub
1239
+ model = SentenceTransformer("tomaarsen/sparse-mpnet-base-nq-fresh")
1240
+ # Run inference
1241
+ sentences = [
1242
+ 'who is cornelius in the book of acts',
1243
+ 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.',
1244
+ "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]",
1245
+ ]
1246
+ embeddings = model.encode(sentences)
1247
+ print(embeddings.shape)
1248
+ # [3, 768]
1249
+
1250
+ # Get the similarity scores for the embeddings
1251
+ similarities = model.similarity(embeddings, embeddings)
1252
+ print(similarities.shape)
1253
+ # [3, 3]
1254
+ ```
1255
+
1256
+ <!--
1257
+ ### Direct Usage (Transformers)
1258
+
1259
+ <details><summary>Click to see the direct usage in Transformers</summary>
1260
+
1261
+ </details>
1262
+ -->
1263
+
1264
+ <!--
1265
+ ### Downstream Usage (Sentence Transformers)
1266
+
1267
+ You can finetune this model on your own dataset.
1268
+
1269
+ <details><summary>Click to expand</summary>
1270
+
1271
+ </details>
1272
+ -->
1273
+
1274
+ <!--
1275
+ ### Out-of-Scope Use
1276
+
1277
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
1278
+ -->
1279
+
1280
+ ## Evaluation
1281
+
1282
+ ### Metrics
1283
+
1284
+ #### Sparse Information Retrieval
1285
+
1286
+ * Datasets: `NanoMSMARCO_16`, `NanoNFCorpus_16` and `NanoNQ_16`
1287
+ * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
1288
+ ```json
1289
+ {
1290
+ "truncate_dim": 16
1291
+ }
1292
+ ```
1293
+
1294
+ | Metric | NanoMSMARCO_16 | NanoNFCorpus_16 | NanoNQ_16 |
1295
+ |:--------------------|:---------------|:----------------|:-----------|
1296
+ | cosine_accuracy@1 | 0.1 | 0.08 | 0.18 |
1297
+ | cosine_accuracy@3 | 0.26 | 0.14 | 0.42 |
1298
+ | cosine_accuracy@5 | 0.36 | 0.24 | 0.54 |
1299
+ | cosine_accuracy@10 | 0.5 | 0.32 | 0.64 |
1300
+ | cosine_precision@1 | 0.1 | 0.08 | 0.18 |
1301
+ | cosine_precision@3 | 0.0867 | 0.06 | 0.14 |
1302
+ | cosine_precision@5 | 0.072 | 0.08 | 0.108 |
1303
+ | cosine_precision@10 | 0.05 | 0.05 | 0.064 |
1304
+ | cosine_recall@1 | 0.1 | 0.006 | 0.18 |
1305
+ | cosine_recall@3 | 0.26 | 0.0094 | 0.4 |
1306
+ | cosine_recall@5 | 0.36 | 0.0133 | 0.5 |
1307
+ | cosine_recall@10 | 0.5 | 0.0165 | 0.6 |
1308
+ | **cosine_ndcg@10** | **0.2721** | **0.061** | **0.3867** |
1309
+ | cosine_mrr@10 | 0.2023 | 0.1407 | 0.3267 |
1310
+ | cosine_map@100 | 0.2176 | 0.0153 | 0.325 |
1311
+
1312
+ #### Sparse Nano BEIR
1313
+
1314
+ * Dataset: `NanoBEIR_mean_16`
1315
+ * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseNanoBEIREvaluator) with these parameters:
1316
+ ```json
1317
+ {
1318
+ "dataset_names": [
1319
+ "msmarco",
1320
+ "nfcorpus",
1321
+ "nq"
1322
+ ],
1323
+ "truncate_dim": 16
1324
+ }
1325
+ ```
1326
+
1327
+ | Metric | Value |
1328
+ |:--------------------|:-----------|
1329
+ | cosine_accuracy@1 | 0.12 |
1330
+ | cosine_accuracy@3 | 0.2733 |
1331
+ | cosine_accuracy@5 | 0.38 |
1332
+ | cosine_accuracy@10 | 0.4867 |
1333
+ | cosine_precision@1 | 0.12 |
1334
+ | cosine_precision@3 | 0.0956 |
1335
+ | cosine_precision@5 | 0.0867 |
1336
+ | cosine_precision@10 | 0.0547 |
1337
+ | cosine_recall@1 | 0.0953 |
1338
+ | cosine_recall@3 | 0.2231 |
1339
+ | cosine_recall@5 | 0.2911 |
1340
+ | cosine_recall@10 | 0.3722 |
1341
+ | **cosine_ndcg@10** | **0.2399** |
1342
+ | cosine_mrr@10 | 0.2233 |
1343
+ | cosine_map@100 | 0.186 |
1344
+
1345
+ #### Sparse Information Retrieval
1346
+
1347
+ * Datasets: `NanoMSMARCO_32`, `NanoNFCorpus_32` and `NanoNQ_32`
1348
+ * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
1349
+ ```json
1350
+ {
1351
+ "truncate_dim": 32
1352
+ }
1353
+ ```
1354
+
1355
+ | Metric | NanoMSMARCO_32 | NanoNFCorpus_32 | NanoNQ_32 |
1356
+ |:--------------------|:---------------|:----------------|:-----------|
1357
+ | cosine_accuracy@1 | 0.18 | 0.14 | 0.32 |
1358
+ | cosine_accuracy@3 | 0.26 | 0.26 | 0.46 |
1359
+ | cosine_accuracy@5 | 0.36 | 0.28 | 0.58 |
1360
+ | cosine_accuracy@10 | 0.56 | 0.34 | 0.68 |
1361
+ | cosine_precision@1 | 0.18 | 0.14 | 0.32 |
1362
+ | cosine_precision@3 | 0.0867 | 0.1133 | 0.1533 |
1363
+ | cosine_precision@5 | 0.072 | 0.096 | 0.116 |
1364
+ | cosine_precision@10 | 0.056 | 0.09 | 0.068 |
1365
+ | cosine_recall@1 | 0.18 | 0.0077 | 0.31 |
1366
+ | cosine_recall@3 | 0.26 | 0.0123 | 0.42 |
1367
+ | cosine_recall@5 | 0.36 | 0.017 | 0.53 |
1368
+ | cosine_recall@10 | 0.56 | 0.0242 | 0.63 |
1369
+ | **cosine_ndcg@10** | **0.3311** | **0.1023** | **0.4604** |
1370
+ | cosine_mrr@10 | 0.2634 | 0.2055 | 0.4212 |
1371
+ | cosine_map@100 | 0.2794 | 0.0226 | 0.4113 |
1372
+
1373
+ #### Sparse Nano BEIR
1374
+
1375
+ * Dataset: `NanoBEIR_mean_32`
1376
+ * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseNanoBEIREvaluator) with these parameters:
1377
+ ```json
1378
+ {
1379
+ "dataset_names": [
1380
+ "msmarco",
1381
+ "nfcorpus",
1382
+ "nq"
1383
+ ],
1384
+ "truncate_dim": 32
1385
+ }
1386
+ ```
1387
+
1388
+ | Metric | Value |
1389
+ |:--------------------|:-----------|
1390
+ | cosine_accuracy@1 | 0.2133 |
1391
+ | cosine_accuracy@3 | 0.3267 |
1392
+ | cosine_accuracy@5 | 0.4067 |
1393
+ | cosine_accuracy@10 | 0.5267 |
1394
+ | cosine_precision@1 | 0.2133 |
1395
+ | cosine_precision@3 | 0.1178 |
1396
+ | cosine_precision@5 | 0.0947 |
1397
+ | cosine_precision@10 | 0.0713 |
1398
+ | cosine_recall@1 | 0.1659 |
1399
+ | cosine_recall@3 | 0.2308 |
1400
+ | cosine_recall@5 | 0.3023 |
1401
+ | cosine_recall@10 | 0.4047 |
1402
+ | **cosine_ndcg@10** | **0.2979** |
1403
+ | cosine_mrr@10 | 0.2967 |
1404
+ | cosine_map@100 | 0.2377 |
1405
+
1406
+ #### Sparse Information Retrieval
1407
+
1408
+ * Datasets: `NanoMSMARCO_64`, `NanoNFCorpus_64` and `NanoNQ_64`
1409
+ * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
1410
+ ```json
1411
+ {
1412
+ "truncate_dim": 64
1413
+ }
1414
+ ```
1415
+
1416
+ | Metric | NanoMSMARCO_64 | NanoNFCorpus_64 | NanoNQ_64 |
1417
+ |:--------------------|:---------------|:----------------|:-----------|
1418
+ | cosine_accuracy@1 | 0.16 | 0.18 | 0.44 |
1419
+ | cosine_accuracy@3 | 0.38 | 0.26 | 0.62 |
1420
+ | cosine_accuracy@5 | 0.46 | 0.32 | 0.68 |
1421
+ | cosine_accuracy@10 | 0.6 | 0.4 | 0.72 |
1422
+ | cosine_precision@1 | 0.16 | 0.18 | 0.44 |
1423
+ | cosine_precision@3 | 0.1267 | 0.1267 | 0.2067 |
1424
+ | cosine_precision@5 | 0.092 | 0.12 | 0.14 |
1425
+ | cosine_precision@10 | 0.06 | 0.088 | 0.074 |
1426
+ | cosine_recall@1 | 0.16 | 0.0095 | 0.42 |
1427
+ | cosine_recall@3 | 0.38 | 0.0129 | 0.58 |
1428
+ | cosine_recall@5 | 0.46 | 0.0369 | 0.64 |
1429
+ | cosine_recall@10 | 0.6 | 0.0476 | 0.68 |
1430
+ | **cosine_ndcg@10** | **0.3545** | **0.115** | **0.5619** |
1431
+ | cosine_mrr@10 | 0.278 | 0.2421 | 0.5396 |
1432
+ | cosine_map@100 | 0.2957 | 0.0318 | 0.5268 |
1433
+
1434
+ #### Sparse Nano BEIR
1435
+
1436
+ * Dataset: `NanoBEIR_mean_64`
1437
+ * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseNanoBEIREvaluator) with these parameters:
1438
+ ```json
1439
+ {
1440
+ "dataset_names": [
1441
+ "msmarco",
1442
+ "nfcorpus",
1443
+ "nq"
1444
+ ],
1445
+ "truncate_dim": 64
1446
+ }
1447
+ ```
1448
+
1449
+ | Metric | Value |
1450
+ |:--------------------|:-----------|
1451
+ | cosine_accuracy@1 | 0.26 |
1452
+ | cosine_accuracy@3 | 0.42 |
1453
+ | cosine_accuracy@5 | 0.4867 |
1454
+ | cosine_accuracy@10 | 0.5733 |
1455
+ | cosine_precision@1 | 0.26 |
1456
+ | cosine_precision@3 | 0.1533 |
1457
+ | cosine_precision@5 | 0.1173 |
1458
+ | cosine_precision@10 | 0.074 |
1459
+ | cosine_recall@1 | 0.1965 |
1460
+ | cosine_recall@3 | 0.3243 |
1461
+ | cosine_recall@5 | 0.379 |
1462
+ | cosine_recall@10 | 0.4425 |
1463
+ | **cosine_ndcg@10** | **0.3438** |
1464
+ | cosine_mrr@10 | 0.3532 |
1465
+ | cosine_map@100 | 0.2848 |
1466
+
1467
+ #### Sparse Information Retrieval
1468
+
1469
+ * Datasets: `NanoMSMARCO_128`, `NanoNFCorpus_128` and `NanoNQ_128`
1470
+ * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
1471
+ ```json
1472
+ {
1473
+ "truncate_dim": 128
1474
+ }
1475
+ ```
1476
+
1477
+ | Metric | NanoMSMARCO_128 | NanoNFCorpus_128 | NanoNQ_128 |
1478
+ |:--------------------|:----------------|:-----------------|:-----------|
1479
+ | cosine_accuracy@1 | 0.2 | 0.14 | 0.38 |
1480
+ | cosine_accuracy@3 | 0.34 | 0.34 | 0.56 |
1481
+ | cosine_accuracy@5 | 0.46 | 0.38 | 0.7 |
1482
+ | cosine_accuracy@10 | 0.68 | 0.52 | 0.8 |
1483
+ | cosine_precision@1 | 0.2 | 0.14 | 0.38 |
1484
+ | cosine_precision@3 | 0.1133 | 0.1667 | 0.1867 |
1485
+ | cosine_precision@5 | 0.092 | 0.128 | 0.144 |
1486
+ | cosine_precision@10 | 0.068 | 0.114 | 0.082 |
1487
+ | cosine_recall@1 | 0.2 | 0.0037 | 0.35 |
1488
+ | cosine_recall@3 | 0.34 | 0.0212 | 0.53 |
1489
+ | cosine_recall@5 | 0.46 | 0.0246 | 0.66 |
1490
+ | cosine_recall@10 | 0.68 | 0.0433 | 0.76 |
1491
+ | **cosine_ndcg@10** | **0.4022** | **0.1267** | **0.5527** |
1492
+ | cosine_mrr@10 | 0.3182 | 0.2538 | 0.5072 |
1493
+ | cosine_map@100 | 0.3323 | 0.0333 | 0.4847 |
1494
+
1495
+ #### Sparse Nano BEIR
1496
+
1497
+ * Dataset: `NanoBEIR_mean_128`
1498
+ * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseNanoBEIREvaluator) with these parameters:
1499
+ ```json
1500
+ {
1501
+ "dataset_names": [
1502
+ "msmarco",
1503
+ "nfcorpus",
1504
+ "nq"
1505
+ ],
1506
+ "truncate_dim": 128
1507
+ }
1508
+ ```
1509
+
1510
+ | Metric | Value |
1511
+ |:--------------------|:-----------|
1512
+ | cosine_accuracy@1 | 0.24 |
1513
+ | cosine_accuracy@3 | 0.4133 |
1514
+ | cosine_accuracy@5 | 0.5133 |
1515
+ | cosine_accuracy@10 | 0.6667 |
1516
+ | cosine_precision@1 | 0.24 |
1517
+ | cosine_precision@3 | 0.1556 |
1518
+ | cosine_precision@5 | 0.1213 |
1519
+ | cosine_precision@10 | 0.088 |
1520
+ | cosine_recall@1 | 0.1846 |
1521
+ | cosine_recall@3 | 0.2971 |
1522
+ | cosine_recall@5 | 0.3815 |
1523
+ | cosine_recall@10 | 0.4944 |
1524
+ | **cosine_ndcg@10** | **0.3605** |
1525
+ | cosine_mrr@10 | 0.3597 |
1526
+ | cosine_map@100 | 0.2834 |
1527
+
1528
+ #### Sparse Information Retrieval
1529
+
1530
+ * Datasets: `NanoMSMARCO_256`, `NanoNFCorpus_256` and `NanoNQ_256`
1531
+ * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseInformationRetrievalEvaluator) with these parameters:
1532
+ ```json
1533
+ {
1534
+ "truncate_dim": 256
1535
+ }
1536
+ ```
1537
+
1538
+ | Metric | NanoMSMARCO_256 | NanoNFCorpus_256 | NanoNQ_256 |
1539
+ |:--------------------|:----------------|:-----------------|:-----------|
1540
+ | cosine_accuracy@1 | 0.26 | 0.18 | 0.42 |
1541
+ | cosine_accuracy@3 | 0.48 | 0.28 | 0.58 |
1542
+ | cosine_accuracy@5 | 0.52 | 0.38 | 0.68 |
1543
+ | cosine_accuracy@10 | 0.68 | 0.5 | 0.76 |
1544
+ | cosine_precision@1 | 0.26 | 0.18 | 0.42 |
1545
+ | cosine_precision@3 | 0.16 | 0.1467 | 0.1933 |
1546
+ | cosine_precision@5 | 0.104 | 0.14 | 0.14 |
1547
+ | cosine_precision@10 | 0.068 | 0.114 | 0.08 |
1548
+ | cosine_recall@1 | 0.26 | 0.0055 | 0.4 |
1549
+ | cosine_recall@3 | 0.48 | 0.0114 | 0.54 |
1550
+ | cosine_recall@5 | 0.52 | 0.0213 | 0.64 |
1551
+ | cosine_recall@10 | 0.68 | 0.0347 | 0.73 |
1552
+ | **cosine_ndcg@10** | **0.4652** | **0.1263** | **0.5612** |
1553
+ | cosine_mrr@10 | 0.398 | 0.2575 | 0.5227 |
1554
+ | cosine_map@100 | 0.4125 | 0.0337 | 0.5087 |
1555
+
1556
+ #### Sparse Nano BEIR
1557
+
1558
+ * Dataset: `NanoBEIR_mean_256`
1559
+ * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.SparseNanoBEIREvaluator) with these parameters:
1560
+ ```json
1561
+ {
1562
+ "dataset_names": [
1563
+ "msmarco",
1564
+ "nfcorpus",
1565
+ "nq"
1566
+ ],
1567
+ "truncate_dim": 256
1568
+ }
1569
+ ```
1570
+
1571
+ | Metric | Value |
1572
+ |:--------------------|:-----------|
1573
+ | cosine_accuracy@1 | 0.2867 |
1574
+ | cosine_accuracy@3 | 0.4467 |
1575
+ | cosine_accuracy@5 | 0.5267 |
1576
+ | cosine_accuracy@10 | 0.6467 |
1577
+ | cosine_precision@1 | 0.2867 |
1578
+ | cosine_precision@3 | 0.1667 |
1579
+ | cosine_precision@5 | 0.128 |
1580
+ | cosine_precision@10 | 0.0873 |
1581
+ | cosine_recall@1 | 0.2218 |
1582
+ | cosine_recall@3 | 0.3438 |
1583
+ | cosine_recall@5 | 0.3938 |
1584
+ | cosine_recall@10 | 0.4816 |
1585
+ | **cosine_ndcg@10** | **0.3842** |
1586
+ | cosine_mrr@10 | 0.3927 |
1587
+ | cosine_map@100 | 0.3183 |
1588
+
1589
+ <!--
1590
+ ## Bias, Risks and Limitations
1591
+
1592
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
1593
+ -->
1594
+
1595
+ <!--
1596
+ ### Recommendations
1597
+
1598
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
1599
+ -->
1600
+
1601
+ ## Training Details
1602
+
1603
+ ### Training Dataset
1604
+
1605
+ #### natural-questions
1606
+
1607
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
1608
+ * Size: 99,000 training samples
1609
+ * Columns: <code>query</code> and <code>answer</code>
1610
+ * Approximate statistics based on the first 1000 samples:
1611
+ | | query | answer |
1612
+ |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
1613
+ | type | string | string |
1614
+ | details | <ul><li>min: 10 tokens</li><li>mean: 11.71 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 131.81 tokens</li><li>max: 450 tokens</li></ul> |
1615
+ * Samples:
1616
+ | query | answer |
1617
+ |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
1618
+ | <code>who played the father in papa don't preach</code> | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code> |
1619
+ | <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> |
1620
+ | <code>how many puppies can a dog give birth to</code> | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code> |
1621
+ * Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#csrloss) with these parameters:
1622
+ ```json
1623
+ {
1624
+ "beta": 0.1,
1625
+ "gamma": 1,
1626
+ "scale": 20.0
1627
+ }
1628
+ ```
1629
+
1630
+ ### Evaluation Dataset
1631
+
1632
+ #### natural-questions
1633
+
1634
+ * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17)
1635
+ * Size: 1,000 evaluation samples
1636
+ * Columns: <code>query</code> and <code>answer</code>
1637
+ * Approximate statistics based on the first 1000 samples:
1638
+ | | query | answer |
1639
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
1640
+ | type | string | string |
1641
+ | details | <ul><li>min: 10 tokens</li><li>mean: 11.69 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 134.01 tokens</li><li>max: 512 tokens</li></ul> |
1642
+ * Samples:
1643
+ | query | answer |
1644
+ |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
1645
+ | <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> |
1646
+ | <code>what kind of car does jay gatsby drive</code> | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code> |
1647
+ | <code>who sings if i can dream about you</code> | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code> |
1648
+ * Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#csrloss) with these parameters:
1649
+ ```json
1650
+ {
1651
+ "beta": 0.1,
1652
+ "gamma": 1,
1653
+ "scale": 20.0
1654
+ }
1655
+ ```
1656
+
1657
+ ### Training Hyperparameters
1658
+ #### Non-Default Hyperparameters
1659
+
1660
+ - `eval_strategy`: steps
1661
+ - `per_device_train_batch_size`: 32
1662
+ - `per_device_eval_batch_size`: 32
1663
+ - `learning_rate`: 4e-05
1664
+ - `weight_decay`: 0.0001
1665
+ - `adam_epsilon`: 6.25e-10
1666
+ - `num_train_epochs`: 1
1667
+ - `warmup_ratio`: 0.1
1668
+ - `bf16`: True
1669
+ - `batch_sampler`: no_duplicates
1670
+
1671
+ #### All Hyperparameters
1672
+ <details><summary>Click to expand</summary>
1673
+
1674
+ - `overwrite_output_dir`: False
1675
+ - `do_predict`: False
1676
+ - `eval_strategy`: steps
1677
+ - `prediction_loss_only`: True
1678
+ - `per_device_train_batch_size`: 32
1679
+ - `per_device_eval_batch_size`: 32
1680
+ - `per_gpu_train_batch_size`: None
1681
+ - `per_gpu_eval_batch_size`: None
1682
+ - `gradient_accumulation_steps`: 1
1683
+ - `eval_accumulation_steps`: None
1684
+ - `torch_empty_cache_steps`: None
1685
+ - `learning_rate`: 4e-05
1686
+ - `weight_decay`: 0.0001
1687
+ - `adam_beta1`: 0.9
1688
+ - `adam_beta2`: 0.999
1689
+ - `adam_epsilon`: 6.25e-10
1690
+ - `max_grad_norm`: 1.0
1691
+ - `num_train_epochs`: 1
1692
+ - `max_steps`: -1
1693
+ - `lr_scheduler_type`: linear
1694
+ - `lr_scheduler_kwargs`: {}
1695
+ - `warmup_ratio`: 0.1
1696
+ - `warmup_steps`: 0
1697
+ - `log_level`: passive
1698
+ - `log_level_replica`: warning
1699
+ - `log_on_each_node`: True
1700
+ - `logging_nan_inf_filter`: True
1701
+ - `save_safetensors`: True
1702
+ - `save_on_each_node`: False
1703
+ - `save_only_model`: False
1704
+ - `restore_callback_states_from_checkpoint`: False
1705
+ - `no_cuda`: False
1706
+ - `use_cpu`: False
1707
+ - `use_mps_device`: False
1708
+ - `seed`: 42
1709
+ - `data_seed`: None
1710
+ - `jit_mode_eval`: False
1711
+ - `use_ipex`: False
1712
+ - `bf16`: True
1713
+ - `fp16`: False
1714
+ - `fp16_opt_level`: O1
1715
+ - `half_precision_backend`: auto
1716
+ - `bf16_full_eval`: False
1717
+ - `fp16_full_eval`: False
1718
+ - `tf32`: None
1719
+ - `local_rank`: 0
1720
+ - `ddp_backend`: None
1721
+ - `tpu_num_cores`: None
1722
+ - `tpu_metrics_debug`: False
1723
+ - `debug`: []
1724
+ - `dataloader_drop_last`: False
1725
+ - `dataloader_num_workers`: 0
1726
+ - `dataloader_prefetch_factor`: None
1727
+ - `past_index`: -1
1728
+ - `disable_tqdm`: False
1729
+ - `remove_unused_columns`: True
1730
+ - `label_names`: None
1731
+ - `load_best_model_at_end`: False
1732
+ - `ignore_data_skip`: False
1733
+ - `fsdp`: []
1734
+ - `fsdp_min_num_params`: 0
1735
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
1736
+ - `tp_size`: 0
1737
+ - `fsdp_transformer_layer_cls_to_wrap`: None
1738
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
1739
+ - `deepspeed`: None
1740
+ - `label_smoothing_factor`: 0.0
1741
+ - `optim`: adamw_torch
1742
+ - `optim_args`: None
1743
+ - `adafactor`: False
1744
+ - `group_by_length`: False
1745
+ - `length_column_name`: length
1746
+ - `ddp_find_unused_parameters`: None
1747
+ - `ddp_bucket_cap_mb`: None
1748
+ - `ddp_broadcast_buffers`: False
1749
+ - `dataloader_pin_memory`: True
1750
+ - `dataloader_persistent_workers`: False
1751
+ - `skip_memory_metrics`: True
1752
+ - `use_legacy_prediction_loop`: False
1753
+ - `push_to_hub`: False
1754
+ - `resume_from_checkpoint`: None
1755
+ - `hub_model_id`: None
1756
+ - `hub_strategy`: every_save
1757
+ - `hub_private_repo`: None
1758
+ - `hub_always_push`: False
1759
+ - `gradient_checkpointing`: False
1760
+ - `gradient_checkpointing_kwargs`: None
1761
+ - `include_inputs_for_metrics`: False
1762
+ - `include_for_metrics`: []
1763
+ - `eval_do_concat_batches`: True
1764
+ - `fp16_backend`: auto
1765
+ - `push_to_hub_model_id`: None
1766
+ - `push_to_hub_organization`: None
1767
+ - `mp_parameters`:
1768
+ - `auto_find_batch_size`: False
1769
+ - `full_determinism`: False
1770
+ - `torchdynamo`: None
1771
+ - `ray_scope`: last
1772
+ - `ddp_timeout`: 1800
1773
+ - `torch_compile`: False
1774
+ - `torch_compile_backend`: None
1775
+ - `torch_compile_mode`: None
1776
+ - `include_tokens_per_second`: False
1777
+ - `include_num_input_tokens_seen`: False
1778
+ - `neftune_noise_alpha`: None
1779
+ - `optim_target_modules`: None
1780
+ - `batch_eval_metrics`: False
1781
+ - `eval_on_start`: False
1782
+ - `use_liger_kernel`: False
1783
+ - `eval_use_gather_object`: False
1784
+ - `average_tokens_across_devices`: False
1785
+ - `prompts`: None
1786
+ - `batch_sampler`: no_duplicates
1787
+ - `multi_dataset_batch_sampler`: proportional
1788
+
1789
+ </details>
1790
+
1791
+ ### Training Logs
1792
+ | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_16_cosine_ndcg@10 | NanoNFCorpus_16_cosine_ndcg@10 | NanoNQ_16_cosine_ndcg@10 | NanoBEIR_mean_16_cosine_ndcg@10 | NanoMSMARCO_32_cosine_ndcg@10 | NanoNFCorpus_32_cosine_ndcg@10 | NanoNQ_32_cosine_ndcg@10 | NanoBEIR_mean_32_cosine_ndcg@10 | NanoMSMARCO_64_cosine_ndcg@10 | NanoNFCorpus_64_cosine_ndcg@10 | NanoNQ_64_cosine_ndcg@10 | NanoBEIR_mean_64_cosine_ndcg@10 | NanoMSMARCO_128_cosine_ndcg@10 | NanoNFCorpus_128_cosine_ndcg@10 | NanoNQ_128_cosine_ndcg@10 | NanoBEIR_mean_128_cosine_ndcg@10 | NanoMSMARCO_256_cosine_ndcg@10 | NanoNFCorpus_256_cosine_ndcg@10 | NanoNQ_256_cosine_ndcg@10 | NanoBEIR_mean_256_cosine_ndcg@10 |
1793
+ |:------:|:----:|:-------------:|:---------------:|:-----------------------------:|:------------------------------:|:------------------------:|:-------------------------------:|:-----------------------------:|:------------------------------:|:------------------------:|:-------------------------------:|:-----------------------------:|:------------------------------:|:------------------------:|:-------------------------------:|:------------------------------:|:-------------------------------:|:-------------------------:|:--------------------------------:|:------------------------------:|:-------------------------------:|:-------------------------:|:--------------------------------:|
1794
+ | -1 | -1 | - | - | 0.0318 | 0.0148 | 0.0149 | 0.0205 | 0.0794 | 0.0234 | 0.0102 | 0.0377 | 0.0855 | 0.0195 | 0.0508 | 0.0519 | 0.1081 | 0.0246 | 0.0264 | 0.0530 | 0.1006 | 0.0249 | 0.0388 | 0.0547 |
1795
+ | 0.0646 | 200 | 0.7332 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1796
+ | 0.1293 | 400 | 0.2606 | 0.1970 | 0.2845 | 0.0970 | 0.3546 | 0.2454 | 0.3778 | 0.1358 | 0.3455 | 0.2864 | 0.3868 | 0.1563 | 0.3806 | 0.3079 | 0.3988 | 0.1664 | 0.4035 | 0.3229 | 0.4020 | 0.1782 | 0.4181 | 0.3327 |
1797
+ | 0.1939 | 600 | 0.2247 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1798
+ | 0.2586 | 800 | 0.1983 | 0.1750 | 0.2908 | 0.0866 | 0.3730 | 0.2502 | 0.3324 | 0.1155 | 0.4275 | 0.2918 | 0.3511 | 0.1621 | 0.4998 | 0.3377 | 0.3920 | 0.1563 | 0.5174 | 0.3553 | 0.4152 | 0.1555 | 0.5153 | 0.3620 |
1799
+ | 0.3232 | 1000 | 0.1822 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1800
+ | 0.3878 | 1200 | 0.1846 | 0.1594 | 0.2775 | 0.0785 | 0.3723 | 0.2428 | 0.2642 | 0.1076 | 0.4389 | 0.2702 | 0.3865 | 0.1328 | 0.4329 | 0.3174 | 0.3883 | 0.1446 | 0.5040 | 0.3456 | 0.3638 | 0.1529 | 0.4939 | 0.3369 |
1801
+ | 0.4525 | 1400 | 0.1669 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1802
+ | 0.5171 | 1600 | 0.1573 | 0.1452 | 0.2740 | 0.0624 | 0.3670 | 0.2345 | 0.3557 | 0.0855 | 0.4188 | 0.2867 | 0.4094 | 0.1099 | 0.5027 | 0.3407 | 0.3885 | 0.1340 | 0.4990 | 0.3405 | 0.4820 | 0.1577 | 0.5453 | 0.3950 |
1803
+ | 0.5818 | 1800 | 0.1502 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1804
+ | 0.6464 | 2000 | 0.1375 | 0.1255 | 0.2307 | 0.0685 | 0.3801 | 0.2264 | 0.2529 | 0.0815 | 0.4335 | 0.2560 | 0.3509 | 0.0955 | 0.4611 | 0.3025 | 0.3932 | 0.1339 | 0.4875 | 0.3382 | 0.4184 | 0.1483 | 0.4904 | 0.3523 |
1805
+ | 0.7111 | 2200 | 0.1359 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1806
+ | 0.7757 | 2400 | 0.1288 | 0.1184 | 0.2737 | 0.0703 | 0.3419 | 0.2286 | 0.3765 | 0.0843 | 0.4440 | 0.3016 | 0.3927 | 0.1247 | 0.5285 | 0.3486 | 0.3726 | 0.1203 | 0.5153 | 0.3361 | 0.4676 | 0.1343 | 0.5523 | 0.3847 |
1807
+ | 0.8403 | 2600 | 0.1235 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1808
+ | 0.9050 | 2800 | 0.1168 | 0.1094 | 0.2751 | 0.0710 | 0.3602 | 0.2354 | 0.3227 | 0.0966 | 0.5046 | 0.3080 | 0.4112 | 0.1129 | 0.5268 | 0.3503 | 0.4077 | 0.1259 | 0.5253 | 0.3530 | 0.4642 | 0.1238 | 0.5726 | 0.3869 |
1809
+ | 0.9696 | 3000 | 0.1187 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1810
+ | -1 | -1 | - | - | 0.2721 | 0.0610 | 0.3867 | 0.2399 | 0.3311 | 0.1023 | 0.4604 | 0.2979 | 0.3545 | 0.1150 | 0.5619 | 0.3438 | 0.4022 | 0.1267 | 0.5527 | 0.3605 | 0.4652 | 0.1263 | 0.5612 | 0.3842 |
1811
+
1812
+
1813
+ ### Environmental Impact
1814
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
1815
+ - **Energy Consumed**: 0.292 kWh
1816
+ - **Carbon Emitted**: 0.113 kg of CO2
1817
+ - **Hours Used**: 0.773 hours
1818
+
1819
+ ### Training Hardware
1820
+ - **On Cloud**: No
1821
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
1822
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
1823
+ - **RAM Size**: 31.78 GB
1824
+
1825
+ ### Framework Versions
1826
+ - Python: 3.11.6
1827
+ - Sentence Transformers: 4.1.0.dev0
1828
+ - Transformers: 4.52.0.dev0
1829
+ - PyTorch: 2.6.0+cu124
1830
+ - Accelerate: 1.5.1
1831
+ - Datasets: 3.3.2
1832
+ - Tokenizers: 0.21.1
1833
+
1834
+ ## Citation
1835
+
1836
+ ### BibTeX
1837
+
1838
+ #### Sentence Transformers
1839
+ ```bibtex
1840
+ @inproceedings{reimers-2019-sentence-bert,
1841
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1842
+ author = "Reimers, Nils and Gurevych, Iryna",
1843
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1844
+ month = "11",
1845
+ year = "2019",
1846
+ publisher = "Association for Computational Linguistics",
1847
+ url = "https://arxiv.org/abs/1908.10084",
1848
+ }
1849
+ ```
1850
+
1851
+ <!--
1852
+ ## Glossary
1853
+
1854
+ *Clearly define terms in order to be accessible across audiences.*
1855
+ -->
1856
+
1857
+ <!--
1858
+ ## Model Card Authors
1859
+
1860
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1861
+ -->
1862
+
1863
+ <!--
1864
+ ## Model Card Contact
1865
+
1866
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1867
+ -->
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MPNetModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-05,
14
+ "max_position_embeddings": 514,
15
+ "model_type": "mpnet",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 1,
19
+ "relative_attention_num_buckets": 32,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.52.0.dev0",
22
+ "vocab_size": 30527
23
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0.dev0",
4
+ "transformers": "4.52.0.dev0",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c28861893896a25094e805ad697c3c10c34aa1c24a6d71fbcd27a751df2b3d7
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_CSRSparsity",
18
+ "type": "sentence_transformers.sparse_encoder.models.CSRSparsity"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": false,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "extra_special_tokens": {},
58
+ "mask_token": "<mask>",
59
+ "model_max_length": 512,
60
+ "pad_token": "<pad>",
61
+ "sep_token": "</s>",
62
+ "strip_accents": null,
63
+ "tokenize_chinese_chars": true,
64
+ "tokenizer_class": "MPNetTokenizer",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff