diff --git "a/anytext.py" "b/anytext.py" new file mode 100644--- /dev/null +++ "b/anytext.py" @@ -0,0 +1,2118 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# Copyright (c) Alibaba, Inc. and its affiliates. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# Based on [AnyText: Multilingual Visual Text Generation And Editing](https://huggingface.co/papers/2311.03054). +# Authors: Yuxiang Tuo, Wangmeng Xiang, Jun-Yan He, Yifeng Geng, Xuansong Xie +# Code: https://github.com/tyxsspa/AnyText with Apache-2.0 license +# +# Adapted to Diffusers by [M. Tolga Cangöz](https://github.com/tolgacangoz). + + +import inspect +import math +import os +import re +import sys +from functools import partial +from typing import Any, Callable, Dict, List, Optional, Tuple, Union + +import cv2 +import numpy as np +import PIL.Image +import torch +import torch.nn.functional as F +from bert_tokenizer import BasicTokenizer +from easydict import EasyDict as edict +from frozen_clip_embedder_t3 import FrozenCLIPEmbedderT3 +from ocr_recog.RecModel import RecModel +from PIL import Image, ImageDraw, ImageFont +from safetensors.torch import load_file +from skimage.transform._geometric import _umeyama as get_sym_mat +from torch import nn +from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection + +from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback +from diffusers.image_processor import PipelineImageInput, VaeImageProcessor +from diffusers.loaders import ( + FromSingleFileMixin, + IPAdapterMixin, + StableDiffusionLoraLoaderMixin, + TextualInversionLoaderMixin, +) +from diffusers.models import AutoencoderKL, ControlNetModel, ImageProjection, UNet2DConditionModel +from diffusers.models.lora import adjust_lora_scale_text_encoder +from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel +from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin +from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput +from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker +from diffusers.schedulers import KarrasDiffusionSchedulers +from diffusers.utils import ( + USE_PEFT_BACKEND, + deprecate, + logging, + replace_example_docstring, + scale_lora_layers, + unscale_lora_layers, +) +from diffusers.utils.torch_utils import is_compiled_module, is_torch_version, randn_tensor +from diffusers.configuration_utils import register_to_config, ConfigMixin +from diffusers.models.modeling_utils import ModelMixin + + +checker = BasicTokenizer() + + +PLACE_HOLDER = "*" +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> from pipeline_anytext import AnyTextPipeline + >>> from anytext_controlnet import AnyTextControlNetModel + >>> from diffusers import DDIMScheduler + >>> from diffusers.utils import load_image + >>> import torch + + >>> # load control net and stable diffusion v1-5 + >>> text_controlnet = AnyTextControlNetModel.from_pretrained("tolgacangoz/anytext-controlnet", torch_dtype=torch.float16, + ... variant="fp16",) + >>> pipe = AnyTextPipeline.from_pretrained("tolgacangoz/anytext", controlnet=text_controlnet, + ... torch_dtype=torch.float16, variant="fp16", + ... ).to("cuda") + + >>> pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) + >>> # uncomment following line if PyTorch>=2.0 is not installed for memory optimization + >>> #pipe.enable_xformers_memory_efficient_attention() + + >>> # uncomment following line if you want to offload the model to CPU for memory optimization + >>> # also remove the `.to("cuda")` part + >>> #pipe.enable_model_cpu_offload() + + >>> # generate image + >>> generator = torch.Generator("cpu").manual_seed(66273235) + >>> prompt = 'photo of caramel macchiato coffee on the table, top-down perspective, with "Any" "Text" written on it using cream' + >>> draw_pos = load_image("www.huggingface.co/a/AnyText/tree/main/examples/gen9.png") + >>> image = pipe(prompt, num_inference_steps=20, generator=generator, mode="generate", + ... draw_pos=draw_pos, + ... ).images[0] + >>> image + ``` +""" + + +def get_clip_token_for_string(tokenizer, string): + batch_encoding = tokenizer( + string, + truncation=True, + max_length=77, + return_length=True, + return_overflowing_tokens=False, + padding="max_length", + return_tensors="pt", + ) + tokens = batch_encoding["input_ids"] + assert ( + torch.count_nonzero(tokens - 49407) == 2 + ), f"String '{string}' maps to more than a single token. Please use another string" + return tokens[0, 1] + + +def get_recog_emb(encoder, img_list): + _img_list = [(img.repeat(1, 3, 1, 1) * 255)[0] for img in img_list] + encoder.predictor.eval() + _, preds_neck = encoder.pred_imglist(_img_list, show_debug=False) + return preds_neck + + +class EmbeddingManager(nn.Module): + def __init__( + self, + embedder, + placeholder_string="*", + use_fp16=False, + ): + super().__init__() + get_token_for_string = partial(get_clip_token_for_string, embedder.tokenizer) + token_dim = 768 + self.get_recog_emb = None + self.token_dim = token_dim + + self.proj = nn.Linear(40 * 64, token_dim) + # self.proj.load_state_dict(load_file("proj.safetensors", device=str(embedder.device))) + if use_fp16: + self.proj = self.proj.to(dtype=torch.float16) + + self.placeholder_token = get_token_for_string(placeholder_string) + + @torch.no_grad() + def encode_text(self, text_info): + if self.get_recog_emb is None: + self.get_recog_emb = partial(get_recog_emb, self.recog) + + gline_list = [] + for i in range(len(text_info["n_lines"])): # sample index in a batch + n_lines = text_info["n_lines"][i] + for j in range(n_lines): # line + gline_list += [text_info["gly_line"][j][i : i + 1]] + + if len(gline_list) > 0: + recog_emb = self.get_recog_emb(gline_list) + enc_glyph = self.proj(recog_emb.reshape(recog_emb.shape[0], -1).to(self.proj.weight.dtype)) + + self.text_embs_all = [] + n_idx = 0 + for i in range(len(text_info["n_lines"])): # sample index in a batch + n_lines = text_info["n_lines"][i] + text_embs = [] + for j in range(n_lines): # line + text_embs += [enc_glyph[n_idx : n_idx + 1]] + n_idx += 1 + self.text_embs_all += [text_embs] + + @torch.no_grad() + def forward( + self, + tokenized_text, + embedded_text, + ): + b, device = tokenized_text.shape[0], tokenized_text.device + for i in range(b): + idx = tokenized_text[i] == self.placeholder_token.to(device) + if sum(idx) > 0: + if i >= len(self.text_embs_all): + print("truncation for log images...") + break + text_emb = torch.cat(self.text_embs_all[i], dim=0) + if sum(idx) != len(text_emb): + print("truncation for long caption...") + text_emb = text_emb.to(embedded_text.device) + embedded_text[i][idx] = text_emb[: sum(idx)] + return embedded_text + + def embedding_parameters(self): + return self.parameters() + + +sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))) + + +def min_bounding_rect(img): + ret, thresh = cv2.threshold(img, 127, 255, 0) + contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) + if len(contours) == 0: + print("Bad contours, using fake bbox...") + return np.array([[0, 0], [100, 0], [100, 100], [0, 100]]) + max_contour = max(contours, key=cv2.contourArea) + rect = cv2.minAreaRect(max_contour) + box = cv2.boxPoints(rect) + box = np.int0(box) + # sort + x_sorted = sorted(box, key=lambda x: x[0]) + left = x_sorted[:2] + right = x_sorted[2:] + left = sorted(left, key=lambda x: x[1]) + (tl, bl) = left + right = sorted(right, key=lambda x: x[1]) + (tr, br) = right + if tl[1] > bl[1]: + (tl, bl) = (bl, tl) + if tr[1] > br[1]: + (tr, br) = (br, tr) + return np.array([tl, tr, br, bl]) + + +def adjust_image(box, img): + pts1 = np.float32([box[0], box[1], box[2], box[3]]) + width = max(np.linalg.norm(pts1[0] - pts1[1]), np.linalg.norm(pts1[2] - pts1[3])) + height = max(np.linalg.norm(pts1[0] - pts1[3]), np.linalg.norm(pts1[1] - pts1[2])) + pts2 = np.float32([[0, 0], [width, 0], [width, height], [0, height]]) + # get transform matrix + M = get_sym_mat(pts1, pts2, estimate_scale=True) + C, H, W = img.shape + T = np.array([[2 / W, 0, -1], [0, 2 / H, -1], [0, 0, 1]]) + theta = np.linalg.inv(T @ M @ np.linalg.inv(T)) + theta = torch.from_numpy(theta[:2, :]).unsqueeze(0).type(torch.float32).to(img.device) + grid = F.affine_grid(theta, torch.Size([1, C, H, W]), align_corners=True) + result = F.grid_sample(img.unsqueeze(0), grid, align_corners=True) + result = torch.clamp(result.squeeze(0), 0, 255) + # crop + result = result[:, : int(height), : int(width)] + return result + + +""" +mask: numpy.ndarray, mask of textual, HWC +src_img: torch.Tensor, source image, CHW +""" + + +def crop_image(src_img, mask): + box = min_bounding_rect(mask) + result = adjust_image(box, src_img) + if len(result.shape) == 2: + result = torch.stack([result] * 3, axis=-1) + return result + + +def create_predictor(model_dir=None, model_lang="ch", device="cpu", use_fp16=False): + model_file_path = model_dir + if model_file_path is not None and not os.path.exists(model_file_path): + raise ValueError("not find model file path {}".format(model_file_path)) + + if model_lang == "ch": + n_class = 6625 + elif model_lang == "en": + n_class = 97 + else: + raise ValueError(f"Unsupported OCR recog model_lang: {model_lang}") + rec_config = edict( + in_channels=3, + backbone=edict(type="MobileNetV1Enhance", scale=0.5, last_conv_stride=[1, 2], last_pool_type="avg"), + neck=edict(type="SequenceEncoder", encoder_type="svtr", dims=64, depth=2, hidden_dims=120, use_guide=True), + head=edict(type="CTCHead", fc_decay=0.00001, out_channels=n_class, return_feats=True), + ) + + rec_model = RecModel(rec_config) + if model_file_path is not None: + rec_model.load_state_dict(torch.load(model_file_path, map_location=device)) + return rec_model + + +def _check_image_file(path): + img_end = ("tiff", "tif", "bmp", "rgb", "jpg", "png", "jpeg") + return path.lower().endswith(tuple(img_end)) + + +def get_image_file_list(img_file): + imgs_lists = [] + if img_file is None or not os.path.exists(img_file): + raise Exception("not found any img file in {}".format(img_file)) + if os.path.isfile(img_file) and _check_image_file(img_file): + imgs_lists.append(img_file) + elif os.path.isdir(img_file): + for single_file in os.listdir(img_file): + file_path = os.path.join(img_file, single_file) + if os.path.isfile(file_path) and _check_image_file(file_path): + imgs_lists.append(file_path) + if len(imgs_lists) == 0: + raise Exception("not found any img file in {}".format(img_file)) + imgs_lists = sorted(imgs_lists) + return imgs_lists + + +class TextRecognizer(object): + def __init__(self, args, predictor): + self.rec_image_shape = [int(v) for v in args["rec_image_shape"].split(",")] + self.rec_batch_num = args["rec_batch_num"] + self.predictor = predictor + self.chars = self.get_char_dict(args["rec_char_dict_path"]) + self.char2id = {x: i for i, x in enumerate(self.chars)} + self.is_onnx = not isinstance(self.predictor, torch.nn.Module) + self.use_fp16 = args["use_fp16"] + + # img: CHW + def resize_norm_img(self, img, max_wh_ratio): + imgC, imgH, imgW = self.rec_image_shape + assert imgC == img.shape[0] + imgW = int((imgH * max_wh_ratio)) + + h, w = img.shape[1:] + ratio = w / float(h) + if math.ceil(imgH * ratio) > imgW: + resized_w = imgW + else: + resized_w = int(math.ceil(imgH * ratio)) + resized_image = torch.nn.functional.interpolate( + img.unsqueeze(0), + size=(imgH, resized_w), + mode="bilinear", + align_corners=True, + ) + resized_image /= 255.0 + resized_image -= 0.5 + resized_image /= 0.5 + padding_im = torch.zeros((imgC, imgH, imgW), dtype=torch.float32).to(img.device) + padding_im[:, :, 0:resized_w] = resized_image[0] + return padding_im + + # img_list: list of tensors with shape chw 0-255 + def pred_imglist(self, img_list, show_debug=False): + img_num = len(img_list) + assert img_num > 0 + # Calculate the aspect ratio of all text bars + width_list = [] + for img in img_list: + width_list.append(img.shape[2] / float(img.shape[1])) + # Sorting can speed up the recognition process + indices = torch.from_numpy(np.argsort(np.array(width_list))) + batch_num = self.rec_batch_num + preds_all = [None] * img_num + preds_neck_all = [None] * img_num + for beg_img_no in range(0, img_num, batch_num): + end_img_no = min(img_num, beg_img_no + batch_num) + norm_img_batch = [] + + imgC, imgH, imgW = self.rec_image_shape[:3] + max_wh_ratio = imgW / imgH + for ino in range(beg_img_no, end_img_no): + h, w = img_list[indices[ino]].shape[1:] + if h > w * 1.2: + img = img_list[indices[ino]] + img = torch.transpose(img, 1, 2).flip(dims=[1]) + img_list[indices[ino]] = img + h, w = img.shape[1:] + # wh_ratio = w * 1.0 / h + # max_wh_ratio = max(max_wh_ratio, wh_ratio) # comment to not use different ratio + for ino in range(beg_img_no, end_img_no): + norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio) + if self.use_fp16: + norm_img = norm_img.half() + norm_img = norm_img.unsqueeze(0) + norm_img_batch.append(norm_img) + norm_img_batch = torch.cat(norm_img_batch, dim=0) + if show_debug: + for i in range(len(norm_img_batch)): + _img = norm_img_batch[i].permute(1, 2, 0).detach().cpu().numpy() + _img = (_img + 0.5) * 255 + _img = _img[:, :, ::-1] + file_name = f"{indices[beg_img_no + i]}" + if os.path.exists(file_name + ".jpg"): + file_name += "_2" # ori image + cv2.imwrite(file_name + ".jpg", _img) + if self.is_onnx: + input_dict = {} + input_dict[self.predictor.get_inputs()[0].name] = norm_img_batch.detach().cpu().numpy() + outputs = self.predictor.run(None, input_dict) + preds = {} + preds["ctc"] = torch.from_numpy(outputs[0]) + preds["ctc_neck"] = [torch.zeros(1)] * img_num + else: + preds = self.predictor(norm_img_batch) + for rno in range(preds["ctc"].shape[0]): + preds_all[indices[beg_img_no + rno]] = preds["ctc"][rno] + preds_neck_all[indices[beg_img_no + rno]] = preds["ctc_neck"][rno] + + return torch.stack(preds_all, dim=0), torch.stack(preds_neck_all, dim=0) + + def get_char_dict(self, character_dict_path): + character_str = [] + with open(character_dict_path, "rb") as fin: + lines = fin.readlines() + for line in lines: + line = line.decode("utf-8").strip("\n").strip("\r\n") + character_str.append(line) + dict_character = list(character_str) + dict_character = ["sos"] + dict_character + [" "] # eos is space + return dict_character + + def get_text(self, order): + char_list = [self.chars[text_id] for text_id in order] + return "".join(char_list) + + def decode(self, mat): + text_index = mat.detach().cpu().numpy().argmax(axis=1) + ignored_tokens = [0] + selection = np.ones(len(text_index), dtype=bool) + selection[1:] = text_index[1:] != text_index[:-1] + for ignored_token in ignored_tokens: + selection &= text_index != ignored_token + return text_index[selection], np.where(selection)[0] + + def get_ctcloss(self, preds, gt_text, weight): + if not isinstance(weight, torch.Tensor): + weight = torch.tensor(weight).to(preds.device) + ctc_loss = torch.nn.CTCLoss(reduction="none") + log_probs = preds.log_softmax(dim=2).permute(1, 0, 2) # NTC-->TNC + targets = [] + target_lengths = [] + for t in gt_text: + targets += [self.char2id.get(i, len(self.chars) - 1) for i in t] + target_lengths += [len(t)] + targets = torch.tensor(targets).to(preds.device) + target_lengths = torch.tensor(target_lengths).to(preds.device) + input_lengths = torch.tensor([log_probs.shape[0]] * (log_probs.shape[1])).to(preds.device) + loss = ctc_loss(log_probs, targets, input_lengths, target_lengths) + loss = loss / input_lengths * weight + return loss + + +class TextEmbeddingModule(nn.Module): + # @register_to_config + def __init__(self, font_path, use_fp16=False, device="cpu"): + super().__init__() + # TODO: Learn if the recommended font file is free to use + self.font = ImageFont.truetype(font_path, 60) + self.frozen_CLIP_embedder_t3 = FrozenCLIPEmbedderT3(device=device, use_fp16=use_fp16) + self.embedding_manager = EmbeddingManager(self.frozen_CLIP_embedder_t3, use_fp16=use_fp16) + rec_model_dir = "./text_embedding_module/OCR/ppv3_rec.pth" + self.text_predictor = create_predictor(rec_model_dir, device=device, use_fp16=use_fp16).eval() + args = {} + args["rec_image_shape"] = "3, 48, 320" + args["rec_batch_num"] = 6 + args["rec_char_dict_path"] = "./text_embedding_module/OCR/ppocr_keys_v1.txt" + args["use_fp16"] = self.use_fp16 + self.embedding_manager.recog = TextRecognizer(args, self.text_predictor) + + @torch.no_grad() + def forward( + self, + prompt, + texts, + negative_prompt, + num_images_per_prompt, + mode, + draw_pos, + sort_priority="↕", + max_chars=77, + revise_pos=False, + h=512, + w=512, + ): + if prompt is None and texts is None: + raise ValueError("Prompt or texts must be provided!") + # preprocess pos_imgs(if numpy, make sure it's white pos in black bg) + if draw_pos is None: + pos_imgs = np.zeros((w, h, 1)) + if isinstance(draw_pos, str): + draw_pos = cv2.imread(draw_pos)[..., ::-1] + if draw_pos is None: + raise ValueError(f"Can't read draw_pos image from {draw_pos}!") + pos_imgs = 255 - draw_pos + elif isinstance(draw_pos, torch.Tensor): + pos_imgs = draw_pos.cpu().numpy() + else: + if not isinstance(draw_pos, np.ndarray): + raise ValueError(f"Unknown format of draw_pos: {type(draw_pos)}") + if mode == "edit": + pos_imgs = cv2.resize(pos_imgs, (w, h)) + pos_imgs = pos_imgs[..., 0:1] + pos_imgs = cv2.convertScaleAbs(pos_imgs) + _, pos_imgs = cv2.threshold(pos_imgs, 254, 255, cv2.THRESH_BINARY) + # separate pos_imgs + pos_imgs = self.separate_pos_imgs(pos_imgs, sort_priority) + if len(pos_imgs) == 0: + pos_imgs = [np.zeros((h, w, 1))] + n_lines = len(texts) + if len(pos_imgs) < n_lines: + if n_lines == 1 and texts[0] == " ": + pass # text-to-image without text + else: + raise ValueError( + f"Found {len(pos_imgs)} positions that < needed {n_lines} from prompt, check and try again!" + ) + elif len(pos_imgs) > n_lines: + str_warning = f"Warning: found {len(pos_imgs)} positions that > needed {n_lines} from prompt." + logger.warning(str_warning) + # get pre_pos, poly_list, hint that needed for anytext + pre_pos = [] + poly_list = [] + for input_pos in pos_imgs: + if input_pos.mean() != 0: + input_pos = input_pos[..., np.newaxis] if len(input_pos.shape) == 2 else input_pos + poly, pos_img = self.find_polygon(input_pos) + pre_pos += [pos_img / 255.0] + poly_list += [poly] + else: + pre_pos += [np.zeros((h, w, 1))] + poly_list += [None] + np_hint = np.sum(pre_pos, axis=0).clip(0, 1) + # prepare info dict + text_info = {} + text_info["glyphs"] = [] + text_info["gly_line"] = [] + text_info["positions"] = [] + text_info["n_lines"] = [len(texts)] * num_images_per_prompt + for i in range(len(texts)): + text = texts[i] + if len(text) > max_chars: + str_warning = f'"{text}" length > max_chars: {max_chars}, will be cut off...' + logger.warning(str_warning) + text = text[:max_chars] + gly_scale = 2 + if pre_pos[i].mean() != 0: + gly_line = self.draw_glyph(self.font, text) + glyphs = self.draw_glyph2( + self.font, text, poly_list[i], scale=gly_scale, width=w, height=h, add_space=False + ) + if revise_pos: + resize_gly = cv2.resize(glyphs, (pre_pos[i].shape[1], pre_pos[i].shape[0])) + new_pos = cv2.morphologyEx( + (resize_gly * 255).astype(np.uint8), + cv2.MORPH_CLOSE, + kernel=np.ones((resize_gly.shape[0] // 10, resize_gly.shape[1] // 10), dtype=np.uint8), + iterations=1, + ) + new_pos = new_pos[..., np.newaxis] if len(new_pos.shape) == 2 else new_pos + contours, _ = cv2.findContours(new_pos, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) + if len(contours) != 1: + str_warning = f"Fail to revise position {i} to bounding rect, remain position unchanged..." + logger.warning(str_warning) + else: + rect = cv2.minAreaRect(contours[0]) + poly = np.int0(cv2.boxPoints(rect)) + pre_pos[i] = cv2.drawContours(new_pos, [poly], -1, 255, -1) / 255.0 + else: + glyphs = np.zeros((h * gly_scale, w * gly_scale, 1)) + gly_line = np.zeros((80, 512, 1)) + pos = pre_pos[i] + text_info["glyphs"] += [self.arr2tensor(glyphs, num_images_per_prompt)] + text_info["gly_line"] += [self.arr2tensor(gly_line, num_images_per_prompt)] + text_info["positions"] += [self.arr2tensor(pos, num_images_per_prompt)] + + # hint = self.arr2tensor(np_hint, len(prompt)) + + self.embedding_manager.encode_text(text_info) + prompt_embeds = self.frozen_CLIP_embedder_t3.encode([prompt], embedding_manager=self.embedding_manager) + + self.embedding_manager.encode_text(text_info) + negative_prompt_embeds = self.frozen_CLIP_embedder_t3.encode( + [negative_prompt], embedding_manager=self.embedding_manager + ) + + return prompt_embeds, negative_prompt_embeds, text_info, np_hint + + def arr2tensor(self, arr, bs): + arr = np.transpose(arr, (2, 0, 1)) + _arr = torch.from_numpy(arr.copy()).float().cpu() + if self.use_fp16: + _arr = _arr.half() + _arr = torch.stack([_arr for _ in range(bs)], dim=0) + return _arr + + def separate_pos_imgs(self, img, sort_priority, gap=102): + num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img) + components = [] + for label in range(1, num_labels): + component = np.zeros_like(img) + component[labels == label] = 255 + components.append((component, centroids[label])) + if sort_priority == "↕": + fir, sec = 1, 0 # top-down first + elif sort_priority == "↔": + fir, sec = 0, 1 # left-right first + else: + raise ValueError(f"Unknown sort_priority: {sort_priority}") + components.sort(key=lambda c: (c[1][fir] // gap, c[1][sec] // gap)) + sorted_components = [c[0] for c in components] + return sorted_components + + def find_polygon(self, image, min_rect=False): + contours, hierarchy = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) + max_contour = max(contours, key=cv2.contourArea) # get contour with max area + if min_rect: + # get minimum enclosing rectangle + rect = cv2.minAreaRect(max_contour) + poly = np.int0(cv2.boxPoints(rect)) + else: + # get approximate polygon + epsilon = 0.01 * cv2.arcLength(max_contour, True) + poly = cv2.approxPolyDP(max_contour, epsilon, True) + n, _, xy = poly.shape + poly = poly.reshape(n, xy) + cv2.drawContours(image, [poly], -1, 255, -1) + return poly, image + + def draw_glyph(self, font, text): + g_size = 50 + W, H = (512, 80) + new_font = font.font_variant(size=g_size) + img = Image.new(mode="1", size=(W, H), color=0) + draw = ImageDraw.Draw(img) + left, top, right, bottom = new_font.getbbox(text) + text_width = max(right - left, 5) + text_height = max(bottom - top, 5) + ratio = min(W * 0.9 / text_width, H * 0.9 / text_height) + new_font = font.font_variant(size=int(g_size * ratio)) + + text_width, text_height = new_font.getsize(text) + offset_x, offset_y = new_font.getoffset(text) + x = (img.width - text_width) // 2 + y = (img.height - text_height) // 2 - offset_y // 2 + draw.text((x, y), text, font=new_font, fill="white") + img = np.expand_dims(np.array(img), axis=2).astype(np.float64) + return img + + def draw_glyph2(self, font, text, polygon, vertAng=10, scale=1, width=512, height=512, add_space=True): + enlarge_polygon = polygon * scale + rect = cv2.minAreaRect(enlarge_polygon) + box = cv2.boxPoints(rect) + box = np.int0(box) + w, h = rect[1] + angle = rect[2] + if angle < -45: + angle += 90 + angle = -angle + if w < h: + angle += 90 + + vert = False + if abs(angle) % 90 < vertAng or abs(90 - abs(angle) % 90) % 90 < vertAng: + _w = max(box[:, 0]) - min(box[:, 0]) + _h = max(box[:, 1]) - min(box[:, 1]) + if _h >= _w: + vert = True + angle = 0 + + img = np.zeros((height * scale, width * scale, 3), np.uint8) + img = Image.fromarray(img) + + # infer font size + image4ratio = Image.new("RGB", img.size, "white") + draw = ImageDraw.Draw(image4ratio) + _, _, _tw, _th = draw.textbbox(xy=(0, 0), text=text, font=font) + text_w = min(w, h) * (_tw / _th) + if text_w <= max(w, h): + # add space + if len(text) > 1 and not vert and add_space: + for i in range(1, 100): + text_space = self.insert_spaces(text, i) + _, _, _tw2, _th2 = draw.textbbox(xy=(0, 0), text=text_space, font=font) + if min(w, h) * (_tw2 / _th2) > max(w, h): + break + text = self.insert_spaces(text, i - 1) + font_size = min(w, h) * 0.80 + else: + shrink = 0.75 if vert else 0.85 + font_size = min(w, h) / (text_w / max(w, h)) * shrink + new_font = font.font_variant(size=int(font_size)) + + left, top, right, bottom = new_font.getbbox(text) + text_width = right - left + text_height = bottom - top + + layer = Image.new("RGBA", img.size, (0, 0, 0, 0)) + draw = ImageDraw.Draw(layer) + if not vert: + draw.text( + (rect[0][0] - text_width // 2, rect[0][1] - text_height // 2 - top), + text, + font=new_font, + fill=(255, 255, 255, 255), + ) + else: + x_s = min(box[:, 0]) + _w // 2 - text_height // 2 + y_s = min(box[:, 1]) + for c in text: + draw.text((x_s, y_s), c, font=new_font, fill=(255, 255, 255, 255)) + _, _t, _, _b = new_font.getbbox(c) + y_s += _b + + rotated_layer = layer.rotate(angle, expand=1, center=(rect[0][0], rect[0][1])) + + x_offset = int((img.width - rotated_layer.width) / 2) + y_offset = int((img.height - rotated_layer.height) / 2) + img.paste(rotated_layer, (x_offset, y_offset), rotated_layer) + img = np.expand_dims(np.array(img.convert("1")), axis=2).astype(np.float64) + return img + + def insert_spaces(self, string, nSpace): + if nSpace == 0: + return string + new_string = "" + for char in string: + new_string += char + " " * nSpace + return new_string[:-nSpace] + + def to(self, *args, **kwargs): + self.frozen_CLIP_embedder_t3 = self.frozen_CLIP_embedder_t3.to(*args, **kwargs) + self.embedding_manager = self.embedding_manager.to(*args, **kwargs) + self.text_predictor = self.text_predictor.to(*args, **kwargs) + self.device = self.frozen_CLIP_embedder_t3.device + return self + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents +def retrieve_latents( + encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample" +): + if hasattr(encoder_output, "latent_dist") and sample_mode == "sample": + return encoder_output.latent_dist.sample(generator) + elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax": + return encoder_output.latent_dist.mode() + elif hasattr(encoder_output, "latents"): + return encoder_output.latents + else: + raise AttributeError("Could not access latents of provided encoder_output") + + +class AuxiliaryLatentModule(nn.Module): + def __init__( + self, + font_path, + vae=None, + device="cpu", + use_fp16=False, + ): + super().__init__() + self.font = ImageFont.truetype(font_path, 60) + self.use_fp16 = use_fp16 + self.device = device + + self.vae = vae.eval() if vae is not None else None + + @torch.no_grad() + def forward( + self, + text_info, + mode, + draw_pos, + ori_image, + num_images_per_prompt, + np_hint, + h=512, + w=512, + ): + if mode == "generate": + edit_image = np.ones((h, w, 3)) * 127.5 # empty mask image + elif mode == "edit": + if draw_pos is None or ori_image is None: + raise ValueError("Reference image and position image are needed for text editing!") + if isinstance(ori_image, str): + ori_image = cv2.imread(ori_image)[..., ::-1] + if ori_image is None: + raise ValueError(f"Can't read ori_image image from {ori_image}!") + elif isinstance(ori_image, torch.Tensor): + ori_image = ori_image.cpu().numpy() + else: + if not isinstance(ori_image, np.ndarray): + raise ValueError(f"Unknown format of ori_image: {type(ori_image)}") + edit_image = ori_image.clip(1, 255) # for mask reason + edit_image = self.check_channels(edit_image) + edit_image = self.resize_image( + edit_image, max_length=768 + ) # make w h multiple of 64, resize if w or h > max_length + + # get masked_x + masked_img = ((edit_image.astype(np.float32) / 127.5) - 1.0) * (1 - np_hint) + masked_img = np.transpose(masked_img, (2, 0, 1)) + masked_img = torch.from_numpy(masked_img.copy()).float().to(self.device) + if self.use_fp16: + masked_img = masked_img.half() + masked_x = (retrieve_latents(self.vae.encode(masked_img[None, ...])) * self.vae.config.scaling_factor).detach() + if self.use_fp16: + masked_x = masked_x.half() + text_info["masked_x"] = torch.cat([masked_x for _ in range(num_images_per_prompt)], dim=0) + + glyphs = torch.cat(text_info["glyphs"], dim=1).sum(dim=1, keepdim=True) + positions = torch.cat(text_info["positions"], dim=1).sum(dim=1, keepdim=True) + + return glyphs, positions, text_info + + def check_channels(self, image): + channels = image.shape[2] if len(image.shape) == 3 else 1 + if channels == 1: + image = cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) + elif channels > 3: + image = image[:, :, :3] + return image + + def resize_image(self, img, max_length=768): + height, width = img.shape[:2] + max_dimension = max(height, width) + + if max_dimension > max_length: + scale_factor = max_length / max_dimension + new_width = int(round(width * scale_factor)) + new_height = int(round(height * scale_factor)) + new_size = (new_width, new_height) + img = cv2.resize(img, new_size) + height, width = img.shape[:2] + img = cv2.resize(img, (width - (width % 64), height - (height % 64))) + return img + + def insert_spaces(self, string, nSpace): + if nSpace == 0: + return string + new_string = "" + for char in string: + new_string += char + " " * nSpace + return new_string[:-nSpace] + + def to(self, device): + self.device = device + self.vae = self.vae.to(device) + return self + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, + sigmas: Optional[List[float]] = None, + **kwargs, +): + """ + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` + must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, + `num_inference_steps` and `sigmas` must be `None`. + sigmas (`List[float]`, *optional*): + Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, + `num_inference_steps` and `timesteps` must be `None`. + + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + if timesteps is not None and sigmas is not None: + raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") + if timesteps is not None: + accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" sigmas schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + + +class AnyTextPipeline( + DiffusionPipeline, + StableDiffusionMixin, + TextualInversionLoaderMixin, + StableDiffusionLoraLoaderMixin, + IPAdapterMixin, + FromSingleFileMixin, +): + r""" + Pipeline for text-to-image generation using Stable Diffusion with ControlNet guidance. + + This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods + implemented for all pipelines (downloading, saving, running on a particular device, etc.). + + The pipeline also inherits the following loading methods: + - [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings + - [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights + - [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights + - [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files + - [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters + + Args: + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) model to encode and decode images to and from latent representations. + text_encoder ([`~transformers.CLIPTextModel`]): + Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). + tokenizer ([`~transformers.CLIPTokenizer`]): + A `CLIPTokenizer` to tokenize text. + unet ([`UNet2DConditionModel`]): + A `UNet2DConditionModel` to denoise the encoded image latents. + controlnet ([`ControlNetModel`] or `List[ControlNetModel]`): + Provides additional conditioning to the `unet` during the denoising process. If you set multiple + ControlNets as a list, the outputs from each ControlNet are added together to create one combined + additional conditioning. + scheduler ([`SchedulerMixin`]): + A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of + [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. + safety_checker ([`StableDiffusionSafetyChecker`]): + Classification module that estimates whether generated images could be considered offensive or harmful. + Please refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for more details + about a model's potential harms. + feature_extractor ([`~transformers.CLIPImageProcessor`]): + A `CLIPImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`. + """ + + model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" + _optional_components = ["safety_checker", "feature_extractor", "image_encoder"] + _exclude_from_cpu_offload = ["safety_checker"] + _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"] + + def __init__( + self, + font_path: str, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + tokenizer: CLIPTokenizer, + unet: UNet2DConditionModel, + controlnet: Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel], + scheduler: KarrasDiffusionSchedulers, + safety_checker: StableDiffusionSafetyChecker, + feature_extractor: CLIPImageProcessor, + image_encoder: CLIPVisionModelWithProjection = None, + requires_safety_checker: bool = True, + ): + super().__init__() + self.text_embedding_module = TextEmbeddingModule( + use_fp16=unet.dtype == torch.float16, device=unet.device, font_path=font_path + ) + self.auxiliary_latent_module = AuxiliaryLatentModule( + vae=vae, use_fp16=unet.dtype == torch.float16, device=unet.device, font_path=font_path + ) + + if safety_checker is None and requires_safety_checker: + logger.warning( + f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" + " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" + " results in services or applications open to the public. Both the diffusers team and Hugging Face" + " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" + " it only for use-cases that involve analyzing network behavior or auditing its results. For more" + " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." + ) + + if safety_checker is not None and feature_extractor is None: + raise ValueError( + "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" + " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." + ) + + if isinstance(controlnet, (list, tuple)): + controlnet = MultiControlNetModel(controlnet) + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + tokenizer=tokenizer, + unet=unet, + controlnet=controlnet, + scheduler=scheduler, + safety_checker=safety_checker, + feature_extractor=feature_extractor, + image_encoder=image_encoder, + # text_embedding_module=self.text_embedding_module, + # auxiliary_latent_module=self.auxiliary_latent_module, + ) + self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True) + self.control_image_processor = VaeImageProcessor( + vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False + ) + self.register_to_config(requires_safety_checker=requires_safety_checker, font_path=font_path) + + def modify_prompt(self, prompt): + prompt = prompt.replace("“", '"') + prompt = prompt.replace("”", '"') + p = '"(.*?)"' + strs = re.findall(p, prompt) + if len(strs) == 0: + strs = [" "] + else: + for s in strs: + prompt = prompt.replace(f'"{s}"', f" {PLACE_HOLDER} ", 1) + if self.is_chinese(prompt): + if self.trans_pipe is None: + return None, None + old_prompt = prompt + prompt = self.trans_pipe(input=prompt + " .")["translation"][:-1] + print(f"Translate: {old_prompt} --> {prompt}") + return prompt, strs + + def is_chinese(self, text): + text = checker._clean_text(text) + for char in text: + cp = ord(char) + if checker._is_chinese_char(cp): + return True + return False + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._encode_prompt + def _encode_prompt( + self, + prompt, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_prompt=None, + prompt_embeds: Optional[torch.Tensor] = None, + negative_prompt_embeds: Optional[torch.Tensor] = None, + lora_scale: Optional[float] = None, + **kwargs, + ): + deprecation_message = "`_encode_prompt()` is deprecated and it will be removed in a future version. Use `encode_prompt()` instead. Also, be aware that the output format changed from a concatenated tensor to a tuple." + deprecate("_encode_prompt()", "1.0.0", deprecation_message, standard_warn=False) + + prompt_embeds_tuple = self.encode_prompt( + prompt=prompt, + device=device, + num_images_per_prompt=num_images_per_prompt, + do_classifier_free_guidance=do_classifier_free_guidance, + negative_prompt=negative_prompt, + prompt_embeds=prompt_embeds, + negative_prompt_embeds=negative_prompt_embeds, + lora_scale=lora_scale, + **kwargs, + ) + + # concatenate for backwards comp + prompt_embeds = torch.cat([prompt_embeds_tuple[1], prompt_embeds_tuple[0]]) + + return prompt_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_prompt + def encode_prompt( + self, + prompt, + device, + num_images_per_prompt, + do_classifier_free_guidance, + negative_prompt=None, + prompt_embeds: Optional[torch.Tensor] = None, + negative_prompt_embeds: Optional[torch.Tensor] = None, + lora_scale: Optional[float] = None, + clip_skip: Optional[int] = None, + ): + r""" + Encodes the prompt into text encoder hidden states. + + Args: + prompt (`str` or `List[str]`, *optional*): + prompt to be encoded + device: (`torch.device`): + torch device + num_images_per_prompt (`int`): + number of images that should be generated per prompt + do_classifier_free_guidance (`bool`): + whether to use classifier free guidance or not + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts not to guide the image generation. If not defined, one has to pass + `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is + less than `1`). + prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + negative_prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt + weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input + argument. + lora_scale (`float`, *optional*): + A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. + clip_skip (`int`, *optional*): + Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that + the output of the pre-final layer will be used for computing the prompt embeddings. + """ + # set lora scale so that monkey patched LoRA + # function of text encoder can correctly access it + if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin): + self._lora_scale = lora_scale + + # dynamically adjust the LoRA scale + if not USE_PEFT_BACKEND: + adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) + else: + scale_lora_layers(self.text_encoder, lora_scale) + + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + if prompt_embeds is None: + # textual inversion: process multi-vector tokens if necessary + if isinstance(self, TextualInversionLoaderMixin): + prompt = self.maybe_convert_prompt(prompt, self.tokenizer) + + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=self.tokenizer.model_max_length, + truncation=True, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( + text_input_ids, untruncated_ids + ): + removed_text = self.tokenizer.batch_decode( + untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] + ) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {self.tokenizer.model_max_length} tokens: {removed_text}" + ) + + if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: + attention_mask = text_inputs.attention_mask.to(device) + else: + attention_mask = None + + if clip_skip is None: + prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) + prompt_embeds = prompt_embeds[0] + else: + prompt_embeds = self.text_encoder( + text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True + ) + # Access the `hidden_states` first, that contains a tuple of + # all the hidden states from the encoder layers. Then index into + # the tuple to access the hidden states from the desired layer. + prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] + # We also need to apply the final LayerNorm here to not mess with the + # representations. The `last_hidden_states` that we typically use for + # obtaining the final prompt representations passes through the LayerNorm + # layer. + prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) + + if self.text_encoder is not None: + prompt_embeds_dtype = self.text_encoder.dtype + elif self.unet is not None: + prompt_embeds_dtype = self.unet.dtype + else: + prompt_embeds_dtype = prompt_embeds.dtype + + prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + + bs_embed, seq_len, _ = prompt_embeds.shape + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) + + # get unconditional embeddings for classifier free guidance + if do_classifier_free_guidance and negative_prompt_embeds is None: + uncond_tokens: List[str] + if negative_prompt is None: + uncond_tokens = [""] * batch_size + elif prompt is not None and type(prompt) is not type(negative_prompt): + raise TypeError( + f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" + f" {type(prompt)}." + ) + elif isinstance(negative_prompt, str): + uncond_tokens = [negative_prompt] + elif batch_size != len(negative_prompt): + raise ValueError( + f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" + f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" + " the batch size of `prompt`." + ) + else: + uncond_tokens = negative_prompt + + # textual inversion: process multi-vector tokens if necessary + if isinstance(self, TextualInversionLoaderMixin): + uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) + + max_length = prompt_embeds.shape[1] + uncond_input = self.tokenizer( + uncond_tokens, + padding="max_length", + max_length=max_length, + truncation=True, + return_tensors="pt", + ) + + if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: + attention_mask = uncond_input.attention_mask.to(device) + else: + attention_mask = None + + negative_prompt_embeds = self.text_encoder( + uncond_input.input_ids.to(device), + attention_mask=attention_mask, + ) + negative_prompt_embeds = negative_prompt_embeds[0] + + if do_classifier_free_guidance: + # duplicate unconditional embeddings for each generation per prompt, using mps friendly method + seq_len = negative_prompt_embeds.shape[1] + + negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) + + negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) + negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + if self.text_encoder is not None: + if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND: + # Retrieve the original scale by scaling back the LoRA layers + unscale_lora_layers(self.text_encoder, lora_scale) + + return prompt_embeds, negative_prompt_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image + def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None): + dtype = next(self.image_encoder.parameters()).dtype + + if not isinstance(image, torch.Tensor): + image = self.feature_extractor(image, return_tensors="pt").pixel_values + + image = image.to(device=device, dtype=dtype) + if output_hidden_states: + image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2] + image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_enc_hidden_states = self.image_encoder( + torch.zeros_like(image), output_hidden_states=True + ).hidden_states[-2] + uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave( + num_images_per_prompt, dim=0 + ) + return image_enc_hidden_states, uncond_image_enc_hidden_states + else: + image_embeds = self.image_encoder(image).image_embeds + image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) + uncond_image_embeds = torch.zeros_like(image_embeds) + + return image_embeds, uncond_image_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds + def prepare_ip_adapter_image_embeds( + self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance + ): + image_embeds = [] + if do_classifier_free_guidance: + negative_image_embeds = [] + if ip_adapter_image_embeds is None: + if not isinstance(ip_adapter_image, list): + ip_adapter_image = [ip_adapter_image] + + if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers): + raise ValueError( + f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters." + ) + + for single_ip_adapter_image, image_proj_layer in zip( + ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers + ): + output_hidden_state = not isinstance(image_proj_layer, ImageProjection) + single_image_embeds, single_negative_image_embeds = self.encode_image( + single_ip_adapter_image, device, 1, output_hidden_state + ) + + image_embeds.append(single_image_embeds[None, :]) + if do_classifier_free_guidance: + negative_image_embeds.append(single_negative_image_embeds[None, :]) + else: + for single_image_embeds in ip_adapter_image_embeds: + if do_classifier_free_guidance: + single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2) + negative_image_embeds.append(single_negative_image_embeds) + image_embeds.append(single_image_embeds) + + ip_adapter_image_embeds = [] + for i, single_image_embeds in enumerate(image_embeds): + single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0) + if do_classifier_free_guidance: + single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0) + single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0) + + single_image_embeds = single_image_embeds.to(device=device) + ip_adapter_image_embeds.append(single_image_embeds) + + return ip_adapter_image_embeds + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker + def run_safety_checker(self, image, device, dtype): + if self.safety_checker is None: + has_nsfw_concept = None + else: + if torch.is_tensor(image): + feature_extractor_input = self.image_processor.postprocess(image, output_type="pil") + else: + feature_extractor_input = self.image_processor.numpy_to_pil(image) + safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device) + image, has_nsfw_concept = self.safety_checker( + images=image, clip_input=safety_checker_input.pixel_values.to(dtype) + ) + return image, has_nsfw_concept + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents + def decode_latents(self, latents): + deprecation_message = "The decode_latents method is deprecated and will be removed in 1.0.0. Please use VaeImageProcessor.postprocess(...) instead" + deprecate("decode_latents", "1.0.0", deprecation_message, standard_warn=False) + + latents = 1 / self.vae.config.scaling_factor * latents + image = self.vae.decode(latents, return_dict=False)[0] + image = (image / 2 + 0.5).clamp(0, 1) + # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 + image = image.cpu().permute(0, 2, 3, 1).float().numpy() + return image + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs + def prepare_extra_step_kwargs(self, generator, eta): + # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature + # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. + # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 + # and should be between [0, 1] + + accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) + extra_step_kwargs = {} + if accepts_eta: + extra_step_kwargs["eta"] = eta + + # check if the scheduler accepts generator + accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) + if accepts_generator: + extra_step_kwargs["generator"] = generator + return extra_step_kwargs + + def check_inputs( + self, + prompt, + # image, + callback_steps, + negative_prompt=None, + prompt_embeds=None, + negative_prompt_embeds=None, + ip_adapter_image=None, + ip_adapter_image_embeds=None, + controlnet_conditioning_scale=1.0, + control_guidance_start=0.0, + control_guidance_end=1.0, + callback_on_step_end_tensor_inputs=None, + ): + if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): + raise ValueError( + f"`callback_steps` has to be a positive integer but is {callback_steps} of type" + f" {type(callback_steps)}." + ) + + if callback_on_step_end_tensor_inputs is not None and not all( + k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs + ): + raise ValueError( + f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + + if negative_prompt is not None and negative_prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" + f" {negative_prompt_embeds}. Please make sure to only forward one of the two." + ) + + if prompt_embeds is not None and negative_prompt_embeds is not None: + if prompt_embeds.shape != negative_prompt_embeds.shape: + raise ValueError( + "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" + f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" + f" {negative_prompt_embeds.shape}." + ) + + # Check `image` + is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( + self.controlnet, torch._dynamo.eval_frame.OptimizedModule + ) + + # Check `controlnet_conditioning_scale` + if ( + isinstance(self.controlnet, ControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, ControlNetModel) + ): + if not isinstance(controlnet_conditioning_scale, float): + print(controlnet_conditioning_scale) + raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") + elif ( + isinstance(self.controlnet, MultiControlNetModel) + or is_compiled + and isinstance(self.controlnet._orig_mod, MultiControlNetModel) + ): + if isinstance(controlnet_conditioning_scale, list): + if any(isinstance(i, list) for i in controlnet_conditioning_scale): + raise ValueError( + "A single batch of varying conditioning scale settings (e.g. [[1.0, 0.5], [0.2, 0.8]]) is not supported at the moment. " + "The conditioning scale must be fixed across the batch." + ) + elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( + self.controlnet.nets + ): + raise ValueError( + "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" + " the same length as the number of controlnets" + ) + else: + assert False + + if not isinstance(control_guidance_start, (tuple, list)): + control_guidance_start = [control_guidance_start] + + if not isinstance(control_guidance_end, (tuple, list)): + control_guidance_end = [control_guidance_end] + + if len(control_guidance_start) != len(control_guidance_end): + raise ValueError( + f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." + ) + + if isinstance(self.controlnet, MultiControlNetModel): + if len(control_guidance_start) != len(self.controlnet.nets): + raise ValueError( + f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." + ) + + for start, end in zip(control_guidance_start, control_guidance_end): + if start >= end: + raise ValueError( + f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." + ) + if start < 0.0: + raise ValueError(f"control guidance start: {start} can't be smaller than 0.") + if end > 1.0: + raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") + + if ip_adapter_image is not None and ip_adapter_image_embeds is not None: + raise ValueError( + "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined." + ) + + if ip_adapter_image_embeds is not None: + if not isinstance(ip_adapter_image_embeds, list): + raise ValueError( + f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}" + ) + elif ip_adapter_image_embeds[0].ndim not in [3, 4]: + raise ValueError( + f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D" + ) + + def check_image(self, image, prompt, prompt_embeds): + image_is_pil = isinstance(image, PIL.Image.Image) + image_is_tensor = isinstance(image, torch.Tensor) + image_is_np = isinstance(image, np.ndarray) + image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) + image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) + image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) + + if ( + not image_is_pil + and not image_is_tensor + and not image_is_np + and not image_is_pil_list + and not image_is_tensor_list + and not image_is_np_list + ): + raise TypeError( + f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" + ) + + if image_is_pil: + image_batch_size = 1 + else: + image_batch_size = len(image) + + if prompt is not None and isinstance(prompt, str): + prompt_batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + prompt_batch_size = len(prompt) + elif prompt_embeds is not None: + prompt_batch_size = prompt_embeds.shape[0] + + if image_batch_size != 1 and image_batch_size != prompt_batch_size: + raise ValueError( + f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" + ) + + def prepare_image( + self, + image, + width, + height, + batch_size, + num_images_per_prompt, + device, + dtype, + do_classifier_free_guidance=False, + guess_mode=False, + ): + image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) + image_batch_size = image.shape[0] + + if image_batch_size == 1: + repeat_by = batch_size + else: + # image batch size is the same as prompt batch size + repeat_by = num_images_per_prompt + + image = image.repeat_interleave(repeat_by, dim=0) + + image = image.to(device=device, dtype=dtype) + + if do_classifier_free_guidance and not guess_mode: + image = torch.cat([image] * 2) + + return image + + # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents + def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): + shape = ( + batch_size, + num_channels_latents, + int(height) // self.vae_scale_factor, + int(width) // self.vae_scale_factor, + ) + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + if latents is None: + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + else: + latents = latents.to(device) + + # scale the initial noise by the standard deviation required by the scheduler + latents = latents * self.scheduler.init_noise_sigma + return latents + + # Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding + def get_guidance_scale_embedding( + self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32 + ) -> torch.Tensor: + """ + See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298 + + Args: + w (`torch.Tensor`): + Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings. + embedding_dim (`int`, *optional*, defaults to 512): + Dimension of the embeddings to generate. + dtype (`torch.dtype`, *optional*, defaults to `torch.float32`): + Data type of the generated embeddings. + + Returns: + `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`. + """ + assert len(w.shape) == 1 + w = w * 1000.0 + + half_dim = embedding_dim // 2 + emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb) + emb = w.to(dtype)[:, None] * emb[None, :] + emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) + if embedding_dim % 2 == 1: # zero pad + emb = torch.nn.functional.pad(emb, (0, 1)) + assert emb.shape == (w.shape[0], embedding_dim) + return emb + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def clip_skip(self): + return self._clip_skip + + # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) + # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` + # corresponds to doing no classifier free guidance. + @property + def do_classifier_free_guidance(self): + return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None + + @property + def cross_attention_kwargs(self): + return self._cross_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 50, + mode: Optional[str] = "generate", + draw_pos: Optional[Union[str, torch.Tensor]] = None, + ori_image: Optional[Union[str, torch.Tensor]] = None, + timesteps: List[int] = None, + sigmas: List[float] = None, + guidance_scale: float = 7.5, + negative_prompt: Optional[Union[str, List[str]]] = None, + num_images_per_prompt: Optional[int] = 1, + eta: float = 0.0, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.Tensor] = None, + prompt_embeds: Optional[torch.Tensor] = None, + negative_prompt_embeds: Optional[torch.Tensor] = None, + ip_adapter_image: Optional[PipelineImageInput] = None, + ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + cross_attention_kwargs: Optional[Dict[str, Any]] = None, + controlnet_conditioning_scale: Union[float, List[float]] = 1.0, + guess_mode: bool = False, + control_guidance_start: Union[float, List[float]] = 0.0, + control_guidance_end: Union[float, List[float]] = 1.0, + clip_skip: Optional[int] = None, + callback_on_step_end: Optional[ + Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] + ] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], + **kwargs, + ): + r""" + The call function to the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. + image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: + `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): + The ControlNet input condition to provide guidance to the `unet` for generation. If the type is + specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted + as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or + width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`, + images must be passed as a list such that each element of the list can be correctly batched for input + to a single ControlNet. When `prompt` is a list, and if a list of images is passed for a single + ControlNet, each will be paired with each prompt in the `prompt` list. This also applies to multiple + ControlNets, where a list of image lists can be passed to batch for each prompt and each ControlNet. + height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The height in pixels of the generated image. + width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): + The width in pixels of the generated image. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + timesteps (`List[int]`, *optional*): + Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument + in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is + passed will be used. Must be in descending order. + sigmas (`List[float]`, *optional*): + Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in + their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed + will be used. + guidance_scale (`float`, *optional*, defaults to 7.5): + A higher guidance scale value encourages the model to generate images closely linked to the text + `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. + negative_prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide what to not include in image generation. If not defined, you need to + pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + eta (`float`, *optional*, defaults to 0.0): + Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies + to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make + generation deterministic. + latents (`torch.Tensor`, *optional*): + Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor is generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not + provided, text embeddings are generated from the `prompt` input argument. + negative_prompt_embeds (`torch.Tensor`, *optional*): + Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If + not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. + ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. + ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): + Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of + IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should + contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not + provided, embeddings are computed from the `ip_adapter_image` input argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generated image. Choose between `PIL.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a + plain tuple. + callback (`Callable`, *optional*): + A function that calls every `callback_steps` steps during inference. The function is called with the + following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. + callback_steps (`int`, *optional*, defaults to 1): + The frequency at which the `callback` function is called. If not specified, the callback is called at + every step. + cross_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in + [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): + The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added + to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set + the corresponding scale as a list. + guess_mode (`bool`, *optional*, defaults to `False`): + The ControlNet encoder tries to recognize the content of the input image even if you remove all + prompts. A `guidance_scale` value between 3.0 and 5.0 is recommended. + control_guidance_start (`float` or `List[float]`, *optional*, defaults to 0.0): + The percentage of total steps at which the ControlNet starts applying. + control_guidance_end (`float` or `List[float]`, *optional*, defaults to 1.0): + The percentage of total steps at which the ControlNet stops applying. + clip_skip (`int`, *optional*): + Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that + the output of the pre-final layer will be used for computing the prompt embeddings. + callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): + A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of + each denoising step during the inference. with the following arguments: `callback_on_step_end(self: + DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a + list of all tensors as specified by `callback_on_step_end_tensor_inputs`. + callback_on_step_end_tensor_inputs (`List`, *optional*): + The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list + will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the + `._callback_tensor_inputs` attribute of your pipeline class. + + Examples: + + Returns: + [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: + If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, + otherwise a `tuple` is returned where the first element is a list with the generated images and the + second element is a list of `bool`s indicating whether the corresponding generated image contains + "not-safe-for-work" (nsfw) content. + """ + + callback = kwargs.pop("callback", None) + callback_steps = kwargs.pop("callback_steps", None) + + if callback is not None: + deprecate( + "callback", + "1.0.0", + "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", + ) + if callback_steps is not None: + deprecate( + "callback_steps", + "1.0.0", + "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`", + ) + + if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): + callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs + + controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet + + # align format for control guidance + if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): + control_guidance_start = len(control_guidance_end) * [control_guidance_start] + elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): + control_guidance_end = len(control_guidance_start) * [control_guidance_end] + elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): + mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 + control_guidance_start, control_guidance_end = ( + mult * [control_guidance_start], + mult * [control_guidance_end], + ) + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + # image, + callback_steps, + negative_prompt, + prompt_embeds, + negative_prompt_embeds, + ip_adapter_image, + ip_adapter_image_embeds, + controlnet_conditioning_scale, + control_guidance_start, + control_guidance_end, + callback_on_step_end_tensor_inputs, + ) + + self._guidance_scale = guidance_scale + self._clip_skip = clip_skip + self._cross_attention_kwargs = cross_attention_kwargs + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + + if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): + controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) + + global_pool_conditions = ( + controlnet.config.global_pool_conditions + if isinstance(controlnet, ControlNetModel) + else controlnet.nets[0].config.global_pool_conditions + ) + guess_mode = guess_mode or global_pool_conditions + + prompt, texts = self.modify_prompt(prompt) + + # 3. Encode input prompt + text_encoder_lora_scale = ( + self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None + ) + prompt_embeds, negative_prompt_embeds, text_info, np_hint = self.text_embedding_module( + prompt, + texts, + negative_prompt, + num_images_per_prompt, + mode, + draw_pos, + ) + + # For classifier free guidance, we need to do two forward passes. + # Here we concatenate the unconditional and text embeddings into a single batch + # to avoid doing two forward passes + if self.do_classifier_free_guidance: + prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + + if ip_adapter_image is not None or ip_adapter_image_embeds is not None: + image_embeds = self.prepare_ip_adapter_image_embeds( + ip_adapter_image, + ip_adapter_image_embeds, + device, + batch_size * num_images_per_prompt, + self.do_classifier_free_guidance, + ) + + # 3.5 Optionally get Guidance Scale Embedding + timestep_cond = None + if self.unet.config.time_cond_proj_dim is not None: + guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) + timestep_cond = self.get_guidance_scale_embedding( + guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim + ).to(device=device, dtype=latents.dtype) + + # 4. Prepare image + if isinstance(controlnet, ControlNetModel): + # image = self.prepare_image( + # image=image, + # width=width, + # height=height, + # batch_size=batch_size * num_images_per_prompt, + # num_images_per_prompt=num_images_per_prompt, + # device=device, + # dtype=controlnet.dtype, + # do_classifier_free_guidance=self.do_classifier_free_guidance, + # guess_mode=guess_mode, + # ) + # height, width = image.shape[-2:] + guided_hint = self.auxiliary_latent_module( + text_info=text_info, + mode=mode, + draw_pos=draw_pos, + ori_image=ori_image, + num_images_per_prompt=num_images_per_prompt, + np_hint=np_hint, + ) + height, width = 512, 512 + # elif isinstance(controlnet, MultiControlNetModel): + # images = [] + + # # Nested lists as ControlNet condition + # if isinstance(image[0], list): + # # Transpose the nested image list + # image = [list(t) for t in zip(*image)] + + # for image_ in image: + # image_ = self.prepare_image( + # image=image_, + # width=width, + # height=height, + # batch_size=batch_size * num_images_per_prompt, + # num_images_per_prompt=num_images_per_prompt, + # device=device, + # dtype=controlnet.dtype, + # do_classifier_free_guidance=self.do_classifier_free_guidance, + # guess_mode=guess_mode, + # ) + + # images.append(image_) + + # image = images + # height, width = image[0].shape[-2:] + else: + assert False + + # 5. Prepare timesteps + timesteps, num_inference_steps = retrieve_timesteps( + self.scheduler, num_inference_steps, device, timesteps, sigmas + ) + self._num_timesteps = len(timesteps) + + # 6. Prepare latent variables + num_channels_latents = self.unet.config.in_channels + latents = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline + extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) + + # 7.1 Add image embeds for IP-Adapter + added_cond_kwargs = ( + {"image_embeds": image_embeds} + if ip_adapter_image is not None or ip_adapter_image_embeds is not None + else None + ) + + # 7.2 Create tensor stating which controlnets to keep + controlnet_keep = [] + for i in range(len(timesteps)): + keeps = [ + 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) + for s, e in zip(control_guidance_start, control_guidance_end) + ] + controlnet_keep.append(keeps[0] if isinstance(controlnet, ControlNetModel) else keeps) + + # 8. Denoising loop + num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order + is_unet_compiled = is_compiled_module(self.unet) + is_controlnet_compiled = is_compiled_module(self.controlnet) + is_torch_higher_equal_2_1 = is_torch_version(">=", "2.1") + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + # Relevant thread: + # https://dev-discuss.pytorch.org/t/cudagraphs-in-pytorch-2-0/1428 + if (is_unet_compiled and is_controlnet_compiled) and is_torch_higher_equal_2_1: + torch._inductor.cudagraph_mark_step_begin() + # expand the latents if we are doing classifier free guidance + latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents + latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) + + # controlnet(s) inference + if guess_mode and self.do_classifier_free_guidance: + # Infer ControlNet only for the conditional batch. + control_model_input = latents + control_model_input = self.scheduler.scale_model_input(control_model_input, t) + controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] + else: + control_model_input = latent_model_input + controlnet_prompt_embeds = prompt_embeds + + if isinstance(controlnet_keep[i], list): + cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] + else: + controlnet_cond_scale = controlnet_conditioning_scale + if isinstance(controlnet_cond_scale, list): + controlnet_cond_scale = controlnet_cond_scale[0] + cond_scale = controlnet_cond_scale * controlnet_keep[i] + + down_block_res_samples, mid_block_res_sample = self.controlnet( + control_model_input, + t, + encoder_hidden_states=controlnet_prompt_embeds, + guided_hint=guided_hint, + conditioning_scale=cond_scale, + guess_mode=guess_mode, + return_dict=False, + ) + + if guess_mode and self.do_classifier_free_guidance: + # Inferred ControlNet only for the conditional batch. + # To apply the output of ControlNet to both the unconditional and conditional batches, + # add 0 to the unconditional batch to keep it unchanged. + down_block_res_samples = [torch.cat([torch.zeros_like(d), d]) for d in down_block_res_samples] + mid_block_res_sample = torch.cat([torch.zeros_like(mid_block_res_sample), mid_block_res_sample]) + + # predict the noise residual + noise_pred = self.unet( + latent_model_input, + t, + encoder_hidden_states=prompt_embeds, + timestep_cond=timestep_cond, + cross_attention_kwargs=self.cross_attention_kwargs, + down_block_additional_residuals=down_block_res_samples, + mid_block_additional_residual=mid_block_res_sample, + added_cond_kwargs=added_cond_kwargs, + return_dict=False, + )[0] + + # perform guidance + if self.do_classifier_free_guidance: + noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) + + # compute the previous noisy sample x_t -> x_t-1 + latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] + + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + + latents = callback_outputs.pop("latents", latents) + prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) + negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + if callback is not None and i % callback_steps == 0: + step_idx = i // getattr(self.scheduler, "order", 1) + callback(step_idx, t, latents) + + # If we do sequential model offloading, let's offload unet and controlnet + # manually for max memory savings + if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: + self.unet.to("cpu") + self.controlnet.to("cpu") + torch.cuda.empty_cache() + + if not output_type == "latent": + image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[ + 0 + ] + image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) + else: + image = latents + has_nsfw_concept = None + + if has_nsfw_concept is None: + do_denormalize = [True] * image.shape[0] + else: + do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] + + image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image, has_nsfw_concept) + + return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)