# Open Source Model Licensed under the Apache License Version 2.0 # and Other Licenses of the Third-Party Components therein: # The below Model in this distribution may have been modified by THL A29 Limited # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. # The below software and/or models in this distribution may have been # modified by THL A29 Limited ("Tencent Modifications"). # All Tencent Modifications are Copyright (C) THL A29 Limited. # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT # except for the third-party components listed below. # Hunyuan 3D does not impose any additional limitations beyond what is outlined # in the repsective licenses of these third-party components. # Users must comply with all terms and conditions of original licenses of these third-party # components and must ensure that the usage of the third party components adheres to # all relevant laws and regulations. # For avoidance of doubts, Hunyuan 3D means the large language models and # their software and algorithms, including trained model weights, parameters (including # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, # fine-tuning enabling code and other elements of the foregoing made publicly available # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. import copy import json import os from typing import Any, Dict, List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from diffusers.models import UNet2DConditionModel from diffusers.models.attention_processor import Attention from diffusers.models.transformers.transformer_2d import BasicTransformerBlock from einops import rearrange def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): # "feed_forward_chunk_size" can be used to save memory if hidden_states.shape[chunk_dim] % chunk_size != 0: raise ValueError( f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) num_chunks = hidden_states.shape[chunk_dim] // chunk_size ff_output = torch.cat( [ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], dim=chunk_dim, ) return ff_output class PoseRoPEAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") def get_1d_rotary_pos_embed( self, dim: int, pos: torch.Tensor, theta: float = 10000.0, linear_factor=1.0, ntk_factor=1.0, ): assert dim % 2 == 0 theta = theta * ntk_factor freqs = ( 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=pos.dtype, device=pos.device)[: (dim // 2)] / dim)) / linear_factor ) # [D/2] freqs = torch.outer(pos, freqs) # type: ignore # [S, D/2] # flux, hunyuan-dit, cogvideox freqs_cos = freqs.cos().repeat_interleave(2, dim=1).float() # [S, D] freqs_sin = freqs.sin().repeat_interleave(2, dim=1).float() # [S, D] return freqs_cos, freqs_sin def get_3d_rotary_pos_embed( self, position, embed_dim, voxel_resolution, theta: int = 10000, ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: """ RoPE for video tokens with 3D structure. Args: voxel_resolution (`int`): The grid size of the spatial positional embedding (height, width). theta (`float`): Scaling factor for frequency computation. Returns: `torch.Tensor`: positional embedding with shape `(temporal_size * grid_size[0] * grid_size[1], embed_dim/2)`. """ assert position.shape[-1]==3 # Compute dimensions for each axis dim_xy = embed_dim // 8 * 3 dim_z = embed_dim // 8 * 2 # Temporal frequencies grid = torch.arange(voxel_resolution, dtype=torch.float32, device=position.device) freqs_xy = self.get_1d_rotary_pos_embed(dim_xy, grid, theta=theta) freqs_z = self.get_1d_rotary_pos_embed(dim_z, grid, theta=theta) xy_cos, xy_sin = freqs_xy # both t_cos and t_sin has shape: voxel_resolution, dim_xy z_cos, z_sin = freqs_z # both w_cos and w_sin has shape: voxel_resolution, dim_z embed_flattn = position.view(-1, position.shape[-1]) x_cos = xy_cos[embed_flattn[:,0], :] x_sin = xy_sin[embed_flattn[:,0], :] y_cos = xy_cos[embed_flattn[:,1], :] y_sin = xy_sin[embed_flattn[:,1], :] z_cos = z_cos[embed_flattn[:,2], :] z_sin = z_sin[embed_flattn[:,2], :] cos = torch.cat((x_cos, y_cos, z_cos), dim=-1) sin = torch.cat((x_sin, y_sin, z_sin), dim=-1) cos = cos.view(*position.shape[:-1], embed_dim) sin = sin.view(*position.shape[:-1], embed_dim) return cos, sin def apply_rotary_emb( self, x: torch.Tensor, freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]] ): cos, sin = freqs_cis # [S, D] cos, sin = cos.to(x.device), sin.to(x.device) cos = cos.unsqueeze(1) sin = sin.unsqueeze(1) x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2] x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3) out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype) return out def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_indices: Dict = None, temb: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) if position_indices is not None: if head_dim in position_indices: image_rotary_emb = position_indices[head_dim] else: image_rotary_emb = self.get_3d_rotary_pos_embed(position_indices['voxel_indices'], head_dim, voxel_resolution=position_indices['voxel_resolution']) position_indices[head_dim] = image_rotary_emb query = self.apply_rotary_emb(query, image_rotary_emb) key = self.apply_rotary_emb(key, image_rotary_emb) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class IPAttnProcessor2_0: r""" Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). """ def __init__(self, scale=0.0): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") self.scale = scale def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, ip_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, temb: Optional[torch.Tensor] = None, *args, **kwargs, ) -> torch.Tensor: if len(args) > 0 or kwargs.get("scale", None) is not None: deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`." deprecate("scale", "1.0.0", deprecation_message) residual = hidden_states if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) # scaled_dot_product_attention expects attention_mask shape to be # (batch, heads, source_length, target_length) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the output of sdp = (batch, num_heads, seq_len, head_dim) # TODO: add support for attn.scale when we move to Torch 2.1 hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) # for ip adapter if ip_hidden_states is not None: ip_key = attn.to_k_ip(ip_hidden_states) ip_value = attn.to_v_ip(ip_hidden_states) ip_key = ip_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) ip_value = ip_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # the output of sdp = (batch, num_heads, seq_len, head_dim) ip_hidden_states = F.scaled_dot_product_attention( query, ip_key, ip_value, attn_mask=None, dropout_p=0.0, is_causal=False ) ip_hidden_states = ip_hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) ip_hidden_states = ip_hidden_states.to(query.dtype) hidden_states = hidden_states + self.scale * ip_hidden_states # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states class Basic2p5DTransformerBlock(torch.nn.Module): def __init__(self, transformer: BasicTransformerBlock, layer_name, use_ipa=True, use_ma=True, use_ra=True) -> None: super().__init__() self.transformer = transformer self.layer_name = layer_name self.use_ipa = use_ipa self.use_ma = use_ma self.use_ra = use_ra if use_ipa: self.attn2.set_processor(IPAttnProcessor2_0()) cross_attention_dim = 1024 self.attn2.to_k_ip = nn.Linear(cross_attention_dim, self.dim, bias=False) self.attn2.to_v_ip = nn.Linear(cross_attention_dim, self.dim, bias=False) # multiview attn if self.use_ma: self.attn_multiview = Attention( query_dim=self.dim, heads=self.num_attention_heads, dim_head=self.attention_head_dim, dropout=self.dropout, bias=self.attention_bias, cross_attention_dim=None, upcast_attention=self.attn1.upcast_attention, out_bias=True, processor=PoseRoPEAttnProcessor2_0(), ) # ref attn if self.use_ra: self.attn_refview = Attention( query_dim=self.dim, heads=self.num_attention_heads, dim_head=self.attention_head_dim, dropout=self.dropout, bias=self.attention_bias, cross_attention_dim=None, upcast_attention=self.attn1.upcast_attention, out_bias=True, ) self._initialize_attn_weights() def _initialize_attn_weights(self): if self.use_ma: self.attn_multiview.load_state_dict(self.attn1.state_dict()) with torch.no_grad(): for layer in self.attn_multiview.to_out: for param in layer.parameters(): param.zero_() if self.use_ra: self.attn_refview.load_state_dict(self.attn1.state_dict()) with torch.no_grad(): for layer in self.attn_refview.to_out: for param in layer.parameters(): param.zero_() if self.use_ipa: self.attn2.to_k_ip.load_state_dict(self.attn2.to_k.state_dict()) self.attn2.to_v_ip.load_state_dict(self.attn2.to_v.state_dict()) def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: return getattr(self.transformer, name) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, encoder_hidden_states: Optional[torch.Tensor] = None, encoder_attention_mask: Optional[torch.Tensor] = None, timestep: Optional[torch.LongTensor] = None, cross_attention_kwargs: Dict[str, Any] = None, class_labels: Optional[torch.LongTensor] = None, added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, ) -> torch.Tensor: # Notice that normalization is always applied before the real computation in the following blocks. # 0. Self-Attention batch_size = hidden_states.shape[0] cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} num_in_batch = cross_attention_kwargs.pop('num_in_batch', 1) mode = cross_attention_kwargs.pop('mode', None) condition_embed_dict = cross_attention_kwargs.pop("condition_embed_dict", None) ip_hidden_states = cross_attention_kwargs.pop("ip_hidden_states", None) position_attn_mask = cross_attention_kwargs.pop("position_attn_mask", None) position_voxel_indices = cross_attention_kwargs.pop("position_voxel_indices", None) if self.norm_type == "ada_norm": norm_hidden_states = self.norm1(hidden_states, timestep) elif self.norm_type == "ada_norm_zero": norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype ) elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]: norm_hidden_states = self.norm1(hidden_states) elif self.norm_type == "ada_norm_continuous": norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"]) elif self.norm_type == "ada_norm_single": shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) ).chunk(6, dim=1) norm_hidden_states = self.norm1(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa else: raise ValueError("Incorrect norm used") if self.pos_embed is not None: norm_hidden_states = self.pos_embed(norm_hidden_states) # 1. Prepare GLIGEN inputs cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} gligen_kwargs = cross_attention_kwargs.pop("gligen", None) attn_output = self.attn1( norm_hidden_states, encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, attention_mask=attention_mask, **cross_attention_kwargs, ) if self.norm_type == "ada_norm_zero": attn_output = gate_msa.unsqueeze(1) * attn_output elif self.norm_type == "ada_norm_single": attn_output = gate_msa * attn_output hidden_states = attn_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) # 1.2 Reference Attention if 'w' in mode: condition_embed_dict[self.layer_name] = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch) # B, (N L), C if 'r' in mode: condition_embed = condition_embed_dict[self.layer_name].unsqueeze(1).repeat(1,num_in_batch,1,1) # B N L C condition_embed = rearrange(condition_embed, 'b n l c -> (b n) l c') attn_output = self.attn_refview( norm_hidden_states, encoder_hidden_states=condition_embed, attention_mask=None, **cross_attention_kwargs ) hidden_states = attn_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) # 1.3 Multiview Attention if num_in_batch > 1 and self.use_ma: multivew_hidden_states = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch) position_mask = None if position_attn_mask is not None: if multivew_hidden_states.shape[1] in position_attn_mask: position_mask = position_attn_mask[multivew_hidden_states.shape[1]] position_indices = None if position_voxel_indices is not None: if multivew_hidden_states.shape[1] in position_voxel_indices: position_indices = position_voxel_indices[multivew_hidden_states.shape[1]] attn_output = self.attn_multiview( multivew_hidden_states, encoder_hidden_states=multivew_hidden_states, attention_mask=position_mask, position_indices=position_indices, **cross_attention_kwargs ) attn_output = rearrange(attn_output, 'b (n l) c -> (b n) l c', n=num_in_batch) hidden_states = attn_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) # 1.2 GLIGEN Control if gligen_kwargs is not None: hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) # 3. Cross-Attention if self.attn2 is not None: if self.norm_type == "ada_norm": norm_hidden_states = self.norm2(hidden_states, timestep) elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]: norm_hidden_states = self.norm2(hidden_states) elif self.norm_type == "ada_norm_single": # For PixArt norm2 isn't applied here: # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 norm_hidden_states = hidden_states elif self.norm_type == "ada_norm_continuous": norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"]) else: raise ValueError("Incorrect norm") if self.pos_embed is not None and self.norm_type != "ada_norm_single": norm_hidden_states = self.pos_embed(norm_hidden_states) if ip_hidden_states is not None: ip_hidden_states = ip_hidden_states.unsqueeze(1).repeat(1,num_in_batch,1,1) # B N L C ip_hidden_states = rearrange(ip_hidden_states, 'b n l c -> (b n) l c') if self.use_ipa: attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, ip_hidden_states=ip_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) else: attn_output = self.attn2( norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=encoder_attention_mask, **cross_attention_kwargs, ) hidden_states = attn_output + hidden_states # 4. Feed-forward # i2vgen doesn't have this norm 🤷‍♂️ if self.norm_type == "ada_norm_continuous": norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"]) elif not self.norm_type == "ada_norm_single": norm_hidden_states = self.norm3(hidden_states) if self.norm_type == "ada_norm_zero": norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self.norm_type == "ada_norm_single": norm_hidden_states = self.norm2(hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) else: ff_output = self.ff(norm_hidden_states) if self.norm_type == "ada_norm_zero": ff_output = gate_mlp.unsqueeze(1) * ff_output elif self.norm_type == "ada_norm_single": ff_output = gate_mlp * ff_output hidden_states = ff_output + hidden_states if hidden_states.ndim == 4: hidden_states = hidden_states.squeeze(1) return hidden_states @torch.no_grad() def compute_voxel_grid_mask(position, grid_resolution=8): position = position.half() B,N,_,H,W = position.shape assert H%grid_resolution==0 and W%grid_resolution==0 valid_mask = (position != 1).all(dim=2, keepdim=True) valid_mask = valid_mask.expand_as(position) position[valid_mask==False] = 0 position = rearrange(position, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution) valid_mask = rearrange(valid_mask, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution) grid_position = position.sum(dim=(-2, -1)) count_masked = valid_mask.sum(dim=(-2, -1)) grid_position = grid_position / count_masked.clamp(min=1) grid_position[count_masked<5] = 0 grid_position = grid_position.permute(0,1,4,2,3) grid_position = rearrange(grid_position, 'b n c h w -> b n (h w) c') grid_position_expanded_1 = grid_position.unsqueeze(2).unsqueeze(4) # 形状变为 B, N, 1, L, 1, 3 grid_position_expanded_2 = grid_position.unsqueeze(1).unsqueeze(3) # 形状变为 B, 1, N, 1, L, 3 # 计算欧氏距离 distances = torch.norm(grid_position_expanded_1 - grid_position_expanded_2, dim=-1) # 形状为 B, N, N, L, L weights = distances grid_distance = 1.73/grid_resolution #weights = weights*-32 #weights = weights.clamp(min=-10000.0) weights = weights< grid_distance return weights def compute_multi_resolution_mask(position_maps, grid_resolutions=[32, 16, 8]): position_attn_mask = {} with torch.no_grad(): for grid_resolution in grid_resolutions: position_mask = compute_voxel_grid_mask(position_maps, grid_resolution) position_mask = rearrange(position_mask, 'b ni nj li lj -> b (ni li) (nj lj)') position_attn_mask[position_mask.shape[1]] = position_mask return position_attn_mask @torch.no_grad() def compute_discrete_voxel_indice(position, grid_resolution=8, voxel_resolution=128): position = position.half() B,N,_,H,W = position.shape assert H%grid_resolution==0 and W%grid_resolution==0 valid_mask = (position != 1).all(dim=2, keepdim=True) valid_mask = valid_mask.expand_as(position) position[valid_mask==False] = 0 position = rearrange(position, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution) valid_mask = rearrange(valid_mask, 'b n c (num_h grid_h) (num_w grid_w) -> b n num_h num_w c grid_h grid_w', num_h=grid_resolution, num_w=grid_resolution) grid_position = position.sum(dim=(-2, -1)) count_masked = valid_mask.sum(dim=(-2, -1)) grid_position = grid_position / count_masked.clamp(min=1) grid_position[count_masked<5] = 0 grid_position = grid_position.permute(0,1,4,2,3).clamp(0, 1) # B N C H W voxel_indices = grid_position * (voxel_resolution - 1) voxel_indices = torch.round(voxel_indices).long() return voxel_indices def compute_multi_resolution_discrete_voxel_indice(position_maps, grid_resolutions=[64, 32, 16, 8], voxel_resolutions=[512, 256, 128, 64]): voxel_indices = {} with torch.no_grad(): for grid_resolution, voxel_resolution in zip(grid_resolutions, voxel_resolutions): voxel_indice = compute_discrete_voxel_indice(position_maps, grid_resolution, voxel_resolution) voxel_indice = rearrange(voxel_indice, 'b n c h w -> b (n h w) c') voxel_indices[voxel_indice.shape[1]] = {'voxel_indices':voxel_indice, 'voxel_resolution':voxel_resolution} return voxel_indices class ImageProjModel(torch.nn.Module): """Projection Model""" def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4): super().__init__() self.generator = None self.cross_attention_dim = cross_attention_dim self.clip_extra_context_tokens = clip_extra_context_tokens self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim) self.norm = torch.nn.LayerNorm(cross_attention_dim) def forward(self, image_embeds): embeds = image_embeds clip_extra_context_tokens = self.proj(embeds).reshape( -1, self.clip_extra_context_tokens, self.cross_attention_dim ) clip_extra_context_tokens = self.norm(clip_extra_context_tokens) return clip_extra_context_tokens class UNet2p5DConditionModel(torch.nn.Module): def __init__(self, unet: UNet2DConditionModel) -> None: super().__init__() self.unet = unet self.unet_dual = copy.deepcopy(unet) self.init_camera_embedding() self.init_attention(self.unet, use_ipa=True, use_ma=True, use_ra=True) self.init_attention(self.unet_dual, use_ipa=False, use_ma=False, use_ra=False) self.init_condition() @staticmethod def from_pretrained(pretrained_model_name_or_path, **kwargs): torch_dtype = kwargs.pop('torch_dtype', torch.float32) config_path = os.path.join(pretrained_model_name_or_path, 'config.json') unet_ckpt_path = os.path.join(pretrained_model_name_or_path, 'diffusion_pytorch_model.bin') with open(config_path, 'r', encoding='utf-8') as file: config = json.load(file) unet = UNet2DConditionModel(**config) unet = UNet2p5DConditionModel(unet) unet.unet.conv_in = torch.nn.Conv2d( 12, unet.unet.conv_in.out_channels, kernel_size=unet.unet.conv_in.kernel_size, stride=unet.unet.conv_in.stride, padding=unet.unet.conv_in.padding, dilation=unet.unet.conv_in.dilation, groups=unet.unet.conv_in.groups, bias=unet.unet.conv_in.bias is not None) unet_ckpt = torch.load(unet_ckpt_path, map_location='cpu', weights_only=True) unet.load_state_dict(unet_ckpt, strict=True) unet = unet.to(torch_dtype) return unet def init_condition(self): self.unet.learned_text_clip_gen = nn.Parameter(torch.randn(1,77,1024)) self.unet.learned_text_clip_ref = nn.Parameter(torch.randn(1,77,1024)) self.unet.image_proj_model = ImageProjModel( cross_attention_dim=self.unet.config.cross_attention_dim, clip_embeddings_dim=1024, ) def init_camera_embedding(self): self.max_num_ref_image = 5 self.max_num_gen_image = 12*3+4*2 time_embed_dim = 1280 self.unet.class_embedding = nn.Embedding(self.max_num_ref_image+self.max_num_gen_image, time_embed_dim) # 将嵌入层的权重初始化为全零 nn.init.zeros_(self.unet.class_embedding.weight) def init_attention(self, unet, use_ipa=True, use_ma=True, use_ra=True): for down_block_i, down_block in enumerate(unet.down_blocks): if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention: for attn_i, attn in enumerate(down_block.attentions): for transformer_i, transformer in enumerate(attn.transformer_blocks): if isinstance(transformer, BasicTransformerBlock): attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'down_{down_block_i}_{attn_i}_{transformer_i}',use_ipa,use_ma,use_ra) if hasattr(unet.mid_block, "has_cross_attention") and unet.mid_block.has_cross_attention: for attn_i, attn in enumerate(unet.mid_block.attentions): for transformer_i, transformer in enumerate(attn.transformer_blocks): if isinstance(transformer, BasicTransformerBlock): attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'mid_{attn_i}_{transformer_i}',use_ipa,use_ma,use_ra) for up_block_i, up_block in enumerate(unet.up_blocks): if hasattr(up_block, "has_cross_attention") and up_block.has_cross_attention: for attn_i, attn in enumerate(up_block.attentions): for transformer_i, transformer in enumerate(attn.transformer_blocks): if isinstance(transformer, BasicTransformerBlock): attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, f'up_{up_block_i}_{attn_i}_{transformer_i}',use_ipa,use_ma,use_ra) def __getattr__(self, name: str): try: return super().__getattr__(name) except AttributeError: return getattr(self.unet, name) def forward( self, sample, timestep, encoder_hidden_states, class_labels=None, *args, cross_attention_kwargs=None, down_intrablock_additional_residuals=None, down_block_res_samples=None, mid_block_res_sample=None, **cached_condition, ): B, N_gen, _, H, W = sample.shape camera_info_gen = cached_condition['camera_info_gen'] + self.max_num_ref_image camera_info_gen = rearrange(camera_info_gen, 'b n -> (b n)') sample = [sample] if 'normal_imgs' in cached_condition: sample.append(cached_condition["normal_imgs"]) if 'position_imgs' in cached_condition: sample.append(cached_condition["position_imgs"]) sample = torch.cat(sample, dim=2) sample = rearrange(sample, 'b n c h w -> (b n) c h w') encoder_hidden_states_gen = encoder_hidden_states.unsqueeze(1).repeat(1, N_gen, 1, 1) encoder_hidden_states_gen = rearrange(encoder_hidden_states_gen, 'b n l c -> (b n) l c') use_position_mask = False use_position_rope = True position_attn_mask = None if use_position_mask: if 'position_attn_mask' in cached_condition: position_attn_mask = cached_condition['position_attn_mask'] else: if 'position_maps' in cached_condition: position_attn_mask = compute_multi_resolution_mask(cached_condition['position_maps']) position_voxel_indices = None if use_position_rope: if 'position_voxel_indices' in cached_condition: position_voxel_indices = cached_condition['position_voxel_indices'] else: if 'position_maps' in cached_condition: position_voxel_indices = compute_multi_resolution_discrete_voxel_indice(cached_condition['position_maps']) if 'ip_hidden_states' in cached_condition: ip_hidden_states = cached_condition['ip_hidden_states'] else: if 'clip_embeds' in cached_condition: ip_hidden_states = self.image_proj_model(cached_condition['clip_embeds']) else: ip_hidden_states = None cached_condition['ip_hidden_states'] = ip_hidden_states if 'condition_embed_dict' in cached_condition: condition_embed_dict = cached_condition['condition_embed_dict'] else: condition_embed_dict = {} ref_latents = cached_condition['ref_latents'] N_ref = ref_latents.shape[1] camera_info_ref = cached_condition['camera_info_ref'] camera_info_ref = rearrange(camera_info_ref, 'b n -> (b n)') #ref_latents = [ref_latents] #if 'normal_imgs' in cached_condition: # ref_latents.append(torch.zeros_like(ref_latents[0])) #if 'position_imgs' in cached_condition: # ref_latents.append(torch.zeros_like(ref_latents[0])) #ref_latents = torch.cat(ref_latents, dim=2) ref_latents = rearrange(ref_latents, 'b n c h w -> (b n) c h w') encoder_hidden_states_ref = self.learned_text_clip_ref.unsqueeze(1).repeat(B, N_ref, 1, 1) encoder_hidden_states_ref = rearrange(encoder_hidden_states_ref, 'b n l c -> (b n) l c') noisy_ref_latents = ref_latents timestep_ref = 0 ''' if timestep.dim()>0: timestep_ref = rearrange(timestep, '(b n) -> b n', b=B)[:,:1].repeat(1, N_ref) timestep_ref = rearrange(timestep_ref, 'b n -> (b n)') else: timestep_ref = timestep noise = torch.randn_like(noisy_ref_latents[:,:4,...]) if self.training: noisy_ref_latents[:,:4,...] = self.train_sched.add_noise(noisy_ref_latents[:,:4,...], noise, timestep_ref) noisy_ref_latents[:,:4,...] = self.train_sched.scale_model_input(noisy_ref_latents[:,:4,...], timestep_ref) else: noisy_ref_latents[:,:4,...] = self.val_sched.add_noise(noisy_ref_latents[:,:4,...], noise, timestep_ref.reshape(-1)) noisy_ref_latents[:,:4,...] = self.val_sched.scale_model_input(noisy_ref_latents[:,:4,...], timestep_ref.reshape(-1)) ''' self.unet_dual( noisy_ref_latents, timestep_ref, encoder_hidden_states=encoder_hidden_states_ref, #class_labels=camera_info_ref, # **kwargs return_dict=False, cross_attention_kwargs={ 'mode':'w', 'num_in_batch':N_ref, 'condition_embed_dict':condition_embed_dict}, ) cached_condition['condition_embed_dict'] = condition_embed_dict return self.unet( sample, timestep, encoder_hidden_states_gen, *args, class_labels=camera_info_gen, down_intrablock_additional_residuals=[ sample.to(dtype=self.unet.dtype) for sample in down_intrablock_additional_residuals ] if down_intrablock_additional_residuals is not None else None, down_block_additional_residuals=[ sample.to(dtype=self.unet.dtype) for sample in down_block_res_samples ] if down_block_res_samples is not None else None, mid_block_additional_residual=( mid_block_res_sample.to(dtype=self.unet.dtype) if mid_block_res_sample is not None else None ), return_dict=False, cross_attention_kwargs={ 'mode':'r', 'num_in_batch':N_gen, 'ip_hidden_states':ip_hidden_states, 'condition_embed_dict':condition_embed_dict, 'position_attn_mask':position_attn_mask, 'position_voxel_indices':position_voxel_indices }, )