Commit
·
a9d0655
1
Parent(s):
07966ca
Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import libraries
|
2 |
+
import torch
|
3 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel
|
4 |
+
from torch.utils.data import Dataset, DataLoader
|
5 |
+
import os
|
6 |
+
|
7 |
+
# Define dataset and functions
|
8 |
+
class TextDataset(Dataset):
|
9 |
+
def __init__(self, file_path, block_size):
|
10 |
+
self.block_size = block_size
|
11 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
12 |
+
self.examples = [line for line in f.read().splitlines() if (len(line) > 0 and not line.isspace())]
|
13 |
+
|
14 |
+
self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2-medium')
|
15 |
+
self.special_tokens_dict = {'pad_token': '<PAD>'}
|
16 |
+
self.num_added_toks = self.tokenizer.add_special_tokens(self.special_tokens_dict)
|
17 |
+
|
18 |
+
def __len__(self):
|
19 |
+
return len(self.examples)
|
20 |
+
|
21 |
+
def __getitem__(self, idx):
|
22 |
+
text = self.examples[idx]
|
23 |
+
tokenized_text = self.tokenizer.encode(text)
|
24 |
+
if len(tokenized_text) > self.block_size:
|
25 |
+
tokenized_text = tokenized_text[:self.block_size]
|
26 |
+
tokenized_text += [self.tokenizer.pad_token_id] * (self.block_size - len(tokenized_text))
|
27 |
+
return torch.tensor(tokenized_text)
|
28 |
+
|
29 |
+
# Define training
|
30 |
+
def train():
|
31 |
+
train_dataset = TextDataset('path/to/your/text/file.txt', block_size=512)
|
32 |
+
train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)
|
33 |
+
|
34 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
35 |
+
model = GPT2LMHeadModel.from_pretrained('gpt2-medium')
|
36 |
+
model.resize_token_embeddings(len(train_dataset.tokenizer))
|
37 |
+
|
38 |
+
model.to(device)
|
39 |
+
|
40 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=1e-5)
|
41 |
+
criterion = torch.nn.CrossEntropyLoss(ignore_index=train_dataset.tokenizer.pad_token_id)
|
42 |
+
|
43 |
+
epochs = 5
|
44 |
+
|
45 |
+
for epoch in range(epochs):
|
46 |
+
model.train()
|
47 |
+
total_loss = 0
|
48 |
+
for batch in train_loader:
|
49 |
+
batch = batch.to(device)
|
50 |
+
optimizer.zero_grad()
|
51 |
+
outputs = model(input_ids=batch[:, :-1], labels=batch[:, 1:])
|
52 |
+
loss = criterion(outputs.logits.view(-1, outputs.logits.shape[-1]), batch[:, 1:].view(-1))
|
53 |
+
loss.backward()
|
54 |
+
optimizer.step()
|
55 |
+
total_loss += loss.item()
|
56 |
+
|
57 |
+
print(f'Epoch {epoch+1}, Loss: {total_loss/len(train_loader):.4f}')
|
58 |
+
|
59 |
+
model.save_pretrained('finetuned_model')
|
60 |
+
|
61 |
+
# TRAIN THE MODEL!!!
|
62 |
+
train()
|