--- tags: - javascript - code-generation - transformers - fine-tuned - distilgpt2 license: mit library_name: transformers --- # šŸš€ DistilGPT-2 Code Generator (Explanation → JavaScript Code) This model is a **fine-tuned version of `distilgpt2`** trained to generate **JavaScript code** from natural language explanations. It was trained on a dataset containing **explanation-code pairs**, making it useful for: āœ… **Code generation from text descriptions** āœ… **Learning JavaScript syntax & patterns** āœ… **Automated coding assistance** --- ## **šŸ›  Model Details** - **Base Model:** `distilgpt2` (6x smaller than GPT-2) - **Dataset:** JavaScript explanations + corresponding functions - **Fine-tuning:** Trained using **LoRA (memory-efficient adaptation)** - **Training Environment:** Google Colab (T4 GPU) - **Optimization:** FP16 precision for faster training --- ## **šŸ“Š Example Usage** Load the model and generate JavaScript code from explanations: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "sureal01/distilgpt2-code-generator" # Replace with your username model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def generate_code(explanation): input_text = f"### Explanation:\n{explanation}\n\n### Generate JavaScript code:\n" inputs = tokenizer(input_text, return_tensors="pt") output = model.generate(**inputs, max_length=150, temperature=0.5, top_p=0.9, repetition_penalty=1.5) return tokenizer.decode(output[0], skip_special_tokens=True) # Example test_explanation = "This function takes a name as input and returns a greeting message." generated_code = generate_code(test_explanation) print("\nšŸ”¹ **Generated Code:**\n", generated_code)