---
base_model: sentence-transformers/paraphrase-mpnet-base-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 'Just finished yet another amazing book by Susan Elizabeth Philips God I love
her books so much Which one to read next hmmm '
- text: I still miss him And i do nt think hes coming back
- text: 'seagull hates me and i m utterly depressed about it i miss him '
- text: ' eeek Your coming I m soo excited to see you on Thursday '
- text: 'Playin City of Villains wishin my buddies were playin with me '
inference: true
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7301231802911534
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:---------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| neutral |
- 'ordered my new shirt'
- 'Yay got the Internet on my itouch working'
- 'Getting ready for work and the sun is shining plus its the w e Bgt tonight what am I gon na do after its finished '
|
| positive | - 'Finally home after a night of dinner and drinking with friends Going to sleep now hoping the bed doesnt spin too much '
- ' Thank you I love my tattoos they are all very special to me My feet ones are beautiful '
- 'Day is going well so far Meeting until four though '
|
| negative | - ' Oh final msg Why didnt you review my boardgame BookchaseA AA12 when you were on telly We didnt even get a nice letter '
- 'have to wear my glasses today cos my right eye is swollen and i dont know why'
- ' how crappy for him'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.7301 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("subham18/setfit-paraphrase-mpnet-base-v2-twitter-sentiment-cleaned-73")
# Run inference
preds = model("I still miss him And i do nt think hes coming back")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 2 | 13.9 | 31 |
| Label | Training Sample Count |
|:---------|:----------------------|
| Negative | 0 |
| Positive | 0 |
| Neutral | 0 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (4, 4)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:-------:|:-------------:|:---------------:|
| 0.0011 | 1 | 0.3222 | - |
| 0.0533 | 50 | 0.223 | - |
| 0.1066 | 100 | 0.2817 | - |
| 0.1599 | 150 | 0.1102 | - |
| 0.2132 | 200 | 0.1271 | - |
| 0.2665 | 250 | 0.0307 | - |
| 0.3198 | 300 | 0.0013 | - |
| 0.3731 | 350 | 0.0006 | - |
| 0.4264 | 400 | 0.0006 | - |
| 0.4797 | 450 | 0.0004 | - |
| 0.5330 | 500 | 0.0006 | - |
| 0.5864 | 550 | 0.0002 | - |
| 0.6397 | 600 | 0.0003 | - |
| 0.6930 | 650 | 0.0002 | - |
| 0.7463 | 700 | 0.0002 | - |
| 0.7996 | 750 | 0.0002 | - |
| 0.8529 | 800 | 0.0002 | - |
| 0.9062 | 850 | 0.0002 | - |
| 0.9595 | 900 | 0.0005 | - |
| **1.0** | **938** | **-** | **0.2816** |
| 1.0128 | 950 | 0.0001 | - |
| 1.0661 | 1000 | 0.0027 | - |
| 1.1194 | 1050 | 0.0002 | - |
| 1.1727 | 1100 | 0.0002 | - |
| 1.2260 | 1150 | 0.0001 | - |
| 1.2793 | 1200 | 0.0003 | - |
| 1.3326 | 1250 | 0.0001 | - |
| 1.3859 | 1300 | 0.0002 | - |
| 1.4392 | 1350 | 0.0001 | - |
| 1.4925 | 1400 | 0.0001 | - |
| 1.5458 | 1450 | 0.0001 | - |
| 1.5991 | 1500 | 0.0001 | - |
| 1.6525 | 1550 | 0.0001 | - |
| 1.7058 | 1600 | 0.0001 | - |
| 1.7591 | 1650 | 0.0001 | - |
| 1.8124 | 1700 | 0.0001 | - |
| 1.8657 | 1750 | 0.0002 | - |
| 1.9190 | 1800 | 0.0001 | - |
| 1.9723 | 1850 | 0.0001 | - |
| 2.0 | 1876 | - | 0.2846 |
| 2.0256 | 1900 | 0.0001 | - |
| 2.0789 | 1950 | 0.0001 | - |
| 2.1322 | 2000 | 0.0001 | - |
| 2.1855 | 2050 | 0.0001 | - |
| 2.2388 | 2100 | 0.0001 | - |
| 2.2921 | 2150 | 0.0001 | - |
| 2.3454 | 2200 | 0.0002 | - |
| 2.3987 | 2250 | 0.0001 | - |
| 2.4520 | 2300 | 0.0001 | - |
| 2.5053 | 2350 | 0.0001 | - |
| 2.5586 | 2400 | 0.0001 | - |
| 2.6119 | 2450 | 0.0007 | - |
| 2.6652 | 2500 | 0.0001 | - |
| 2.7186 | 2550 | 0.0001 | - |
| 2.7719 | 2600 | 0.0002 | - |
| 2.8252 | 2650 | 0.0001 | - |
| 2.8785 | 2700 | 0.0001 | - |
| 2.9318 | 2750 | 0.0001 | - |
| 2.9851 | 2800 | 0.0001 | - |
| 3.0 | 2814 | - | 0.2843 |
| 3.0384 | 2850 | 0.0001 | - |
| 3.0917 | 2900 | 0.0001 | - |
| 3.1450 | 2950 | 0.0001 | - |
| 3.1983 | 3000 | 0.0001 | - |
| 3.2516 | 3050 | 0.0002 | - |
| 3.3049 | 3100 | 0.0001 | - |
| 3.3582 | 3150 | 0.0001 | - |
| 3.4115 | 3200 | 0.0001 | - |
| 3.4648 | 3250 | 0.0001 | - |
| 3.5181 | 3300 | 0.0 | - |
| 3.5714 | 3350 | 0.0001 | - |
| 3.6247 | 3400 | 0.0 | - |
| 3.6780 | 3450 | 0.0 | - |
| 3.7313 | 3500 | 0.0001 | - |
| 3.7846 | 3550 | 0.0001 | - |
| 3.8380 | 3600 | 0.0002 | - |
| 3.8913 | 3650 | 0.0001 | - |
| 3.9446 | 3700 | 0.0002 | - |
| 3.9979 | 3750 | 0.0 | - |
| 4.0 | 3752 | - | 0.2861 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.12.3
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.39.0
- PyTorch: 2.4.0+cu121
- Datasets: 2.21.0
- Tokenizers: 0.15.2
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```