--- base_model: sentence-transformers/paraphrase-mpnet-base-v2 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 'Just finished yet another amazing book by Susan Elizabeth Philips God I love her books so much Which one to read next hmmm ' - text: I still miss him And i do nt think hes coming back - text: 'seagull hates me and i m utterly depressed about it i miss him ' - text: ' eeek Your coming I m soo excited to see you on Thursday ' - text: 'Playin City of Villains wishin my buddies were playin with me ' inference: true model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7301231802911534 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | neutral | | | positive | | | negative | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.7301 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("subham18/setfit-paraphrase-mpnet-base-v2-twitter-sentiment-cleaned-73") # Run inference preds = model("I still miss him And i do nt think hes coming back") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 2 | 13.9 | 31 | | Label | Training Sample Count | |:---------|:----------------------| | Negative | 0 | | Positive | 0 | | Neutral | 0 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (4, 4) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:-------:|:-------------:|:---------------:| | 0.0011 | 1 | 0.3222 | - | | 0.0533 | 50 | 0.223 | - | | 0.1066 | 100 | 0.2817 | - | | 0.1599 | 150 | 0.1102 | - | | 0.2132 | 200 | 0.1271 | - | | 0.2665 | 250 | 0.0307 | - | | 0.3198 | 300 | 0.0013 | - | | 0.3731 | 350 | 0.0006 | - | | 0.4264 | 400 | 0.0006 | - | | 0.4797 | 450 | 0.0004 | - | | 0.5330 | 500 | 0.0006 | - | | 0.5864 | 550 | 0.0002 | - | | 0.6397 | 600 | 0.0003 | - | | 0.6930 | 650 | 0.0002 | - | | 0.7463 | 700 | 0.0002 | - | | 0.7996 | 750 | 0.0002 | - | | 0.8529 | 800 | 0.0002 | - | | 0.9062 | 850 | 0.0002 | - | | 0.9595 | 900 | 0.0005 | - | | **1.0** | **938** | **-** | **0.2816** | | 1.0128 | 950 | 0.0001 | - | | 1.0661 | 1000 | 0.0027 | - | | 1.1194 | 1050 | 0.0002 | - | | 1.1727 | 1100 | 0.0002 | - | | 1.2260 | 1150 | 0.0001 | - | | 1.2793 | 1200 | 0.0003 | - | | 1.3326 | 1250 | 0.0001 | - | | 1.3859 | 1300 | 0.0002 | - | | 1.4392 | 1350 | 0.0001 | - | | 1.4925 | 1400 | 0.0001 | - | | 1.5458 | 1450 | 0.0001 | - | | 1.5991 | 1500 | 0.0001 | - | | 1.6525 | 1550 | 0.0001 | - | | 1.7058 | 1600 | 0.0001 | - | | 1.7591 | 1650 | 0.0001 | - | | 1.8124 | 1700 | 0.0001 | - | | 1.8657 | 1750 | 0.0002 | - | | 1.9190 | 1800 | 0.0001 | - | | 1.9723 | 1850 | 0.0001 | - | | 2.0 | 1876 | - | 0.2846 | | 2.0256 | 1900 | 0.0001 | - | | 2.0789 | 1950 | 0.0001 | - | | 2.1322 | 2000 | 0.0001 | - | | 2.1855 | 2050 | 0.0001 | - | | 2.2388 | 2100 | 0.0001 | - | | 2.2921 | 2150 | 0.0001 | - | | 2.3454 | 2200 | 0.0002 | - | | 2.3987 | 2250 | 0.0001 | - | | 2.4520 | 2300 | 0.0001 | - | | 2.5053 | 2350 | 0.0001 | - | | 2.5586 | 2400 | 0.0001 | - | | 2.6119 | 2450 | 0.0007 | - | | 2.6652 | 2500 | 0.0001 | - | | 2.7186 | 2550 | 0.0001 | - | | 2.7719 | 2600 | 0.0002 | - | | 2.8252 | 2650 | 0.0001 | - | | 2.8785 | 2700 | 0.0001 | - | | 2.9318 | 2750 | 0.0001 | - | | 2.9851 | 2800 | 0.0001 | - | | 3.0 | 2814 | - | 0.2843 | | 3.0384 | 2850 | 0.0001 | - | | 3.0917 | 2900 | 0.0001 | - | | 3.1450 | 2950 | 0.0001 | - | | 3.1983 | 3000 | 0.0001 | - | | 3.2516 | 3050 | 0.0002 | - | | 3.3049 | 3100 | 0.0001 | - | | 3.3582 | 3150 | 0.0001 | - | | 3.4115 | 3200 | 0.0001 | - | | 3.4648 | 3250 | 0.0001 | - | | 3.5181 | 3300 | 0.0 | - | | 3.5714 | 3350 | 0.0001 | - | | 3.6247 | 3400 | 0.0 | - | | 3.6780 | 3450 | 0.0 | - | | 3.7313 | 3500 | 0.0001 | - | | 3.7846 | 3550 | 0.0001 | - | | 3.8380 | 3600 | 0.0002 | - | | 3.8913 | 3650 | 0.0001 | - | | 3.9446 | 3700 | 0.0002 | - | | 3.9979 | 3750 | 0.0 | - | | 4.0 | 3752 | - | 0.2861 | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.12.3 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.39.0 - PyTorch: 2.4.0+cu121 - Datasets: 2.21.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```