--- language: - en license: apache-2.0 datasets: - Intel/orca_dpo_pairs model-index: - name: TinyLlama-1.1B-orca-v1.0 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 36.35 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sreeramajay/TinyLlama-1.1B-orca-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 61.23 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sreeramajay/TinyLlama-1.1B-orca-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 25.18 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sreeramajay/TinyLlama-1.1B-orca-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 36.58 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sreeramajay/TinyLlama-1.1B-orca-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 61.4 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sreeramajay/TinyLlama-1.1B-orca-v1.0 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 2.27 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sreeramajay/TinyLlama-1.1B-orca-v1.0 name: Open LLM Leaderboard --- Applied DPO to TinyLlama-1.1B-Chat-v1.0 using orca_dpo_pairs dataset This is only experimental Model created by following instruction from the nice Blog [Fine-tune a Mistral-7b model with Direct Preference Optimization ](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac) You can run this model using the following code: ```python # Format prompt message = [ {"role": "system", "content": "You are a helpful assistant chatbot."}, {"role": "user", "content": "What is a Large Language Model?"} ] tokenizer = AutoTokenizer.from_pretrained(new_model) prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False) # Create pipeline pipeline = transformers.pipeline( "text-generation", model=new_model, tokenizer=tokenizer ) # Generate text sequences = pipeline( prompt, do_sample=True, temperature=0.7, top_p=0.9, num_return_sequences=1, max_length=200, ) print(sequences[0]['generated_text']) # <|system|> # You are a helpful assistant chatbot. # <|user|> # What is a Large Language Model? # <|assistant|> # A Large Language Model (LLM) is a type of deep learning model that processes large amounts of text or data to improve the accuracy of natural language processing tasks such as sentiment analysis, machine translation, and question answering. LLMs are trained using large datasets, which allow them to generalize better and have better performance compared to traditional machine learning models. They are capable of handling vast amounts of text and can learn complex relationships between words, phrases, and sentences, making them an essential tool for natural language processing. ``` Results on GPT4ALL benchmark: | Tasks | Metric |Value | |Stderr| |-------------|--------|-----:|---|-----:| |arc_challenge|acc |0.3003|± |0.0134| | |acc_norm|0.3276|± |0.0137| |arc_easy |acc |0.6115|± |0.0100| | |acc_norm|0.5354|± |0.0102| |boolq |acc |0.6147|± |0.0085| |hellaswag |acc |0.4633|± |0.0050| | |acc_norm|0.6033|± |0.0049| |openbookqa |acc |0.2480|± |0.0193| | |acc_norm|0.3720|± |0.0216| |piqa |acc |0.7470|± |0.0101| | |acc_norm|0.7470|± |0.0101| |winogrande |acc |0.6054|± |0.0137| # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sreeramajay__TinyLlama-1.1B-orca-v1.0) | Metric |Value| |---------------------------------|----:| |Avg. |37.17| |AI2 Reasoning Challenge (25-Shot)|36.35| |HellaSwag (10-Shot) |61.23| |MMLU (5-Shot) |25.18| |TruthfulQA (0-shot) |36.58| |Winogrande (5-shot) |61.40| |GSM8k (5-shot) | 2.27|