""" This repo is forked from [Boyuan Chen](https://boyuan.space/)'s research template [repo](https://github.com/buoyancy99/research-template). By its MIT license, you must keep the above sentence in `README.md` and the `LICENSE` file to credit the author. """ from abc import ABC, abstractmethod from typing import Optional, Union, Literal, List, Dict import pathlib import os import hydra import torch from lightning.pytorch.strategies.ddp import DDPStrategy import lightning.pytorch as pl from lightning.pytorch.loggers.wandb import WandbLogger from lightning.pytorch.utilities.types import TRAIN_DATALOADERS from lightning.pytorch.callbacks import LearningRateMonitor, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_info from omegaconf import DictConfig from utils.print_utils import cyan from utils.distributed_utils import is_rank_zero from safetensors.torch import load_model from pathlib import Path from huggingface_hub import hf_hub_download torch.set_float32_matmul_precision("high") def load_custom_checkpoint(algo, optimizer, checkpoint_path): if not checkpoint_path: rank_zero_info("No checkpoint path provided, skipping checkpoint loading.") return None if not isinstance(checkpoint_path, Path): checkpoint_path = Path(checkpoint_path) if "yslan" in str(checkpoint_path): hf_ckpt = str(checkpoint_path).split('/') repo_id = '/'.join(hf_ckpt[:2]) file_name = '/'.join(hf_ckpt[2:]) model_path = hf_hub_download(repo_id=repo_id, filename=file_name) ckpt = torch.load(model_path, map_location=torch.device('cpu')) algo.load_state_dict(ckpt['state_dict'], strict=False) elif checkpoint_path.suffix == ".pt": ckpt = torch.load(checkpoint_path, weights_only=True) algo.load_state_dict(ckpt, strict=False) elif checkpoint_path.suffix == ".ckpt": ckpt = torch.load(checkpoint_path, map_location=torch.device('cpu')) algo.load_state_dict(ckpt['state_dict'], strict=False) elif checkpoint_path.suffix == ".safetensors": load_model(algo, checkpoint_path, strict=False) elif os.path.isdir(checkpoint_path): ckpt_files = [f for f in os.listdir(checkpoint_path) if f.endswith('.ckpt')] if not ckpt_files: raise FileNotFoundError("在指定文件夹中未找到任何 .ckpt 文件!") selected_ckpt = max(ckpt_files) selected_ckpt_path = os.path.join(checkpoint_path, selected_ckpt) print(f"加载的 checkpoint 文件为: {selected_ckpt_path}") ckpt = torch.load(selected_ckpt_path, map_location=torch.device('cpu')) algo.load_state_dict(ckpt['state_dict'], strict=False) rank_zero_info("Model weights loaded.") class BaseExperiment(ABC): """ Abstract class for an experiment. This generalizes the pytorch lightning Trainer & lightning Module to more flexible experiments that doesn't fit in the typical ml loop, e.g. multi-stage reinforcement learning benchmarks. """ # each key has to be a yaml file under '[project_root]/configurations/algorithm' without .yaml suffix compatible_algorithms: Dict = NotImplementedError def __init__( self, root_cfg: DictConfig, logger: Optional[WandbLogger] = None, ckpt_path: Optional[Union[str, pathlib.Path]] = None, ) -> None: """ Constructor Args: cfg: configuration file that contains everything about the experiment logger: a pytorch-lightning WandbLogger instance ckpt_path: an optional path to saved checkpoint """ super().__init__() self.root_cfg = root_cfg self.cfg = root_cfg.experiment self.debug = root_cfg.debug self.logger = logger self.ckpt_path = ckpt_path self.algo = None self.customized_load = self.cfg.customized_load self.load_vae = self.cfg.load_vae self.load_t_to_r = self.cfg.load_t_to_r self.zero_init_gate=self.cfg.zero_init_gate self.only_tune_refer = self.cfg.only_tune_refer self.diffusion_path = self.cfg.diffusion_path self.vae_path = self.cfg.vae_path # "/mnt/xiaozeqi/.cache/huggingface/hub/models--Etched--oasis-500m/snapshots/4ca7d2d811f4f0c6fd1d5719bf83f14af3446c0c/vit-l-20.safetensors" self.pose_predictor_path = self.cfg.pose_predictor_path # "/mnt/xiaozeqi/diffusionforcing/outputs/2025-03-28/16-45-11/checkpoints/epoch0step595000.ckpt" def _build_algo(self): """ Build the lightning module :return: a pytorch-lightning module to be launched """ algo_name = self.root_cfg.algorithm._name if algo_name not in self.compatible_algorithms: raise ValueError( f"Algorithm {algo_name} not found in compatible_algorithms for this Experiment class. " "Make sure you define compatible_algorithms correctly and make sure that each key has " "same name as yaml file under '[project_root]/configurations/algorithm' without .yaml suffix" ) return self.compatible_algorithms[algo_name](self.root_cfg.algorithm) def exec_task(self, task: str) -> None: """ Executing a certain task specified by string. Each task should be a stage of experiment. In most computer vision / nlp applications, tasks should be just train and test. In reinforcement learning, you might have more stages such as collecting dataset etc Args: task: a string specifying a task implemented for this experiment """ if hasattr(self, task) and callable(getattr(self, task)): if is_rank_zero: print(cyan("Executing task:"), f"{task} out of {self.cfg.tasks}") getattr(self, task)() else: raise ValueError( f"Specified task '{task}' not defined for class {self.__class__.__name__} or is not callable." ) def exec_interactive(self, task: str) -> None: """ Executing a certain task specified by string. Each task should be a stage of experiment. In most computer vision / nlp applications, tasks should be just train and test. In reinforcement learning, you might have more stages such as collecting dataset etc Args: task: a string specifying a task implemented for this experiment """ if hasattr(self, task) and callable(getattr(self, task)): if is_rank_zero: print(cyan("Executing task:"), f"{task} out of {self.cfg.tasks}") return getattr(self, task)() else: raise ValueError( f"Specified task '{task}' not defined for class {self.__class__.__name__} or is not callable." ) class BaseLightningExperiment(BaseExperiment): """ Abstract class for pytorch lightning experiments. Useful for computer vision & nlp where main components are simply models, datasets and train loop. """ # each key has to be a yaml file under '[project_root]/configurations/algorithm' without .yaml suffix compatible_algorithms: Dict = NotImplementedError # each key has to be a yaml file under '[project_root]/configurations/dataset' without .yaml suffix compatible_datasets: Dict = NotImplementedError def _build_trainer_callbacks(self): callbacks = [] if self.logger: callbacks.append(LearningRateMonitor("step", True)) def _build_training_loader(self) -> Optional[Union[TRAIN_DATALOADERS, pl.LightningDataModule]]: train_dataset = self._build_dataset("training") shuffle = ( False if isinstance(train_dataset, torch.utils.data.IterableDataset) else self.cfg.training.data.shuffle ) if train_dataset: return torch.utils.data.DataLoader( train_dataset, batch_size=self.cfg.training.batch_size, num_workers=min(os.cpu_count(), self.cfg.training.data.num_workers), shuffle=shuffle, persistent_workers=True, ) else: return None def _build_validation_loader(self) -> Optional[Union[TRAIN_DATALOADERS, pl.LightningDataModule]]: validation_dataset = self._build_dataset("validation") shuffle = ( False if isinstance(validation_dataset, torch.utils.data.IterableDataset) else self.cfg.validation.data.shuffle ) if validation_dataset: return torch.utils.data.DataLoader( validation_dataset, batch_size=self.cfg.validation.batch_size, num_workers=min(os.cpu_count(), self.cfg.validation.data.num_workers), shuffle=shuffle, persistent_workers=True, ) else: return None def _build_test_loader(self) -> Optional[Union[TRAIN_DATALOADERS, pl.LightningDataModule]]: test_dataset = self._build_dataset("test") shuffle = False if isinstance(test_dataset, torch.utils.data.IterableDataset) else self.cfg.test.data.shuffle if test_dataset: return torch.utils.data.DataLoader( test_dataset, batch_size=self.cfg.test.batch_size, num_workers=min(os.cpu_count(), self.cfg.test.data.num_workers), shuffle=shuffle, persistent_workers=True, ) else: return None def training(self) -> None: """ All training happens here """ if not self.algo: self.algo = self._build_algo() if self.cfg.training.compile: self.algo = torch.compile(self.algo) callbacks = [] if self.logger: callbacks.append(LearningRateMonitor("step", True)) if "checkpointing" in self.cfg.training: callbacks.append( ModelCheckpoint( pathlib.Path(hydra.core.hydra_config.HydraConfig.get()["runtime"]["output_dir"]) / "checkpoints", **self.cfg.training.checkpointing, ) ) # TODO do not upload checkpoint to wandb # trainer = pl.Trainer( # accelerator="auto", # logger=self.logger if self.logger else False, # devices=torch.cuda.device_count(), # num_nodes=self.cfg.num_nodes, # strategy=DDPStrategy(find_unused_parameters=True) if torch.cuda.device_count() > 1 else "auto", # callbacks=callbacks, # gradient_clip_val=self.cfg.training.optim.gradient_clip_val, # val_check_interval=self.cfg.validation.val_every_n_step, # limit_val_batches=self.cfg.validation.limit_batch, # check_val_every_n_epoch=self.cfg.validation.val_every_n_epoch, # accumulate_grad_batches=self.cfg.training.optim.accumulate_grad_batches, # precision=self.cfg.training.precision, # detect_anomaly=False, # self.cfg.debug, # num_sanity_val_steps=int(self.cfg.debug), # max_epochs=self.cfg.training.max_epochs, # max_steps=self.cfg.training.max_steps, # max_time=self.cfg.training.max_time, # ) trainer = pl.Trainer( accelerator="auto", devices="auto", # 自动选择设备 strategy=DDPStrategy(find_unused_parameters=True) if torch.cuda.device_count() > 1 else "auto", logger=self.logger or False, # 简化写法 callbacks=callbacks, gradient_clip_val=self.cfg.training.optim.gradient_clip_val or 0.0, # 确保默认值 val_check_interval=self.cfg.validation.val_every_n_step if self.cfg.validation.val_every_n_step else None, limit_val_batches=self.cfg.validation.limit_batch, check_val_every_n_epoch=self.cfg.validation.val_every_n_epoch if not self.cfg.validation.val_every_n_step else None, accumulate_grad_batches=self.cfg.training.optim.accumulate_grad_batches or 1, # 默认累积为1 precision=self.cfg.training.precision or 32, # 默认32位精度 detect_anomaly=False, # 默认关闭异常检测 num_sanity_val_steps=int(self.cfg.debug) if self.cfg.debug else 0, max_epochs=self.cfg.training.max_epochs, max_steps=self.cfg.training.max_steps, max_time=self.cfg.training.max_time ) if self.customized_load: if self.load_vae: load_custom_checkpoint(algo=self.algo.diffusion_model.model,optimizer=None,checkpoint_path=self.ckpt_path) load_custom_checkpoint(algo=self.algo.vae,optimizer=None,checkpoint_path=self.vae_path) else: load_custom_checkpoint(algo=self.algo,optimizer=None,checkpoint_path=self.ckpt_path) if self.load_t_to_r: param_list = [] for name, para in self.algo.diffusion_model.named_parameters(): if 't_' in name and 't_embedder' not in name: print(name) param_list.append(para) it = 0 for name, para in self.algo.diffusion_model.named_parameters(): if 'r_' in name: para.requires_grad_(False) try: para.copy_(param_list[it].detach().cpu()) except: import pdb;pdb.set_trace() para.requires_grad_(True) it += 1 if self.zero_init_gate: for name, para in self.algo.diffusion_model.named_parameters(): if 'r_adaLN_modulation' in name: para.requires_grad_(False) para[2*1024:3*1024] = 0 para[5*1024:6*1024] = 0 para.requires_grad_(True) if self.only_tune_refer: for name, para in self.algo.diffusion_model.named_parameters(): para.requires_grad_(False) if 'r_' in name or 'pose_embedder' in name or 'pose_cond_mlp' in name or 'lora_' in name: para.requires_grad_(True) trainer.fit( self.algo, train_dataloaders=self._build_training_loader(), val_dataloaders=self._build_validation_loader(), ckpt_path=None, ) else: if self.only_tune_refer: for name, para in self.algo.diffusion_model.named_parameters(): para.requires_grad_(False) if 'r_' in name or 'pose_embedder' in name or 'pose_cond_mlp' in name or 'lora_' in name: para.requires_grad_(True) trainer.fit( self.algo, train_dataloaders=self._build_training_loader(), val_dataloaders=self._build_validation_loader(), ckpt_path=self.ckpt_path, ) def validation(self) -> None: """ All validation happens here """ if not self.algo: self.algo = self._build_algo() if self.cfg.validation.compile: self.algo = torch.compile(self.algo) callbacks = [] trainer = pl.Trainer( accelerator="auto", logger=self.logger, devices="auto", num_nodes=self.cfg.num_nodes, strategy=DDPStrategy(find_unused_parameters=False) if torch.cuda.device_count() > 1 else "auto", callbacks=callbacks, # limit_val_batches=self.cfg.validation.limit_batch, limit_val_batches=self.cfg.validation.limit_batch, precision=self.cfg.validation.precision, detect_anomaly=False, # self.cfg.debug, inference_mode=self.cfg.validation.inference_mode, ) if self.customized_load: if self.load_vae: load_custom_checkpoint(algo=self.algo.diffusion_model.model,optimizer=None,checkpoint_path=self.ckpt_path) load_custom_checkpoint(algo=self.algo.vae,optimizer=None,checkpoint_path=self.vae_path) else: load_custom_checkpoint(algo=self.algo,optimizer=None,checkpoint_path=self.ckpt_path) if self.load_t_to_r: param_list = [] for name, para in self.algo.diffusion_model.named_parameters(): if 't_' in name and 't_embedder' not in name: print(name) param_list.append(para) it = 0 for name, para in self.algo.diffusion_model.named_parameters(): if 'r_' in name: para.requires_grad_(False) try: para.copy_(param_list[it].detach().cpu()) except: import pdb;pdb.set_trace() para.requires_grad_(True) it += 1 if self.zero_init_gate: for name, para in self.algo.diffusion_model.named_parameters(): if 'r_adaLN_modulation' in name: para.requires_grad_(False) para[2*1024:3*1024] = 0 para[5*1024:6*1024] = 0 para.requires_grad_(True) trainer.validate( self.algo, dataloaders=self._build_validation_loader(), ckpt_path=None, ) else: trainer.validate( self.algo, dataloaders=self._build_validation_loader(), ckpt_path=self.ckpt_path, ) def test(self) -> None: """ All testing happens here """ if not self.algo: self.algo = self._build_algo() if self.cfg.test.compile: self.algo = torch.compile(self.algo) callbacks = [] trainer = pl.Trainer( accelerator="auto", logger=self.logger, devices="auto", num_nodes=self.cfg.num_nodes, strategy=DDPStrategy(find_unused_parameters=False) if torch.cuda.device_count() > 1 else "auto", callbacks=callbacks, limit_test_batches=self.cfg.test.limit_batch, precision=self.cfg.test.precision, detect_anomaly=False, # self.cfg.debug, ) # Only load the checkpoint if only testing. Otherwise, it will have been loaded # and further trained during train. trainer.test( self.algo, dataloaders=self._build_test_loader(), ckpt_path=self.ckpt_path, ) if not self.algo: self.algo = self._build_algo() if self.cfg.validation.compile: self.algo = torch.compile(self.algo) def interactive(self): if not self.algo: self.algo = self._build_algo() if self.cfg.validation.compile: self.algo = torch.compile(self.algo) if self.customized_load: load_custom_checkpoint(algo=self.algo.diffusion_model,optimizer=None,checkpoint_path=self.diffusion_path) load_custom_checkpoint(algo=self.algo.vae,optimizer=None,checkpoint_path=self.vae_path) load_custom_checkpoint(algo=self.algo.pose_prediction_model,optimizer=None,checkpoint_path=self.pose_predictor_path) return self.algo else: raise NotImplementedError def _build_dataset(self, split: str) -> Optional[torch.utils.data.Dataset]: if split in ["training", "test", "validation"]: return self.compatible_datasets[self.root_cfg.dataset._name](self.root_cfg.dataset, split=split) else: raise NotImplementedError(f"split '{split}' is not implemented")