defaults: - base_pytorch_algo # dataset-dependent configurations x_shape: ${dataset.observation_shape} frame_stack: 1 frame_skip: 1 data_mean: ${dataset.data_mean} data_std: ${dataset.data_std} external_cond_dim: 0 #${dataset.action_dim} context_frames: ${dataset.context_length} # training hyperparameters weight_decay: 1e-4 warmup_steps: 10000 optimizer_beta: [0.9, 0.999] # diffusion-related uncertainty_scale: 1 guidance_scale: 0.0 chunk_size: 1 # -1 for full trajectory diffusion, number to specify diffusion chunk size scheduling_matrix: autoregressive noise_level: random_all causal: True diffusion: # training objective: pred_x0 beta_schedule: cosine schedule_fn_kwargs: {} clip_noise: 20.0 use_snr: False use_cum_snr: False use_fused_snr: False snr_clip: 5.0 cum_snr_decay: 0.98 timesteps: 1000 # sampling sampling_timesteps: 50 # fixme, numer of diffusion steps, should be increased ddim_sampling_eta: 1.0 stabilization_level: 10 # architecture architecture: network_size: 64