|
defaults: |
|
- base_pytorch_algo |
|
|
|
|
|
x_shape: ${dataset.observation_shape} |
|
frame_stack: 1 |
|
frame_skip: 1 |
|
data_mean: ${dataset.data_mean} |
|
data_std: ${dataset.data_std} |
|
external_cond_dim: 0 |
|
context_frames: ${dataset.context_length} |
|
|
|
weight_decay: 1e-4 |
|
warmup_steps: 10000 |
|
optimizer_beta: [0.9, 0.999] |
|
|
|
uncertainty_scale: 1 |
|
guidance_scale: 0.0 |
|
chunk_size: 1 |
|
scheduling_matrix: autoregressive |
|
noise_level: random_all |
|
causal: True |
|
|
|
diffusion: |
|
|
|
objective: pred_x0 |
|
beta_schedule: cosine |
|
schedule_fn_kwargs: {} |
|
clip_noise: 20.0 |
|
use_snr: False |
|
use_cum_snr: False |
|
use_fused_snr: False |
|
snr_clip: 5.0 |
|
cum_snr_decay: 0.98 |
|
timesteps: 1000 |
|
|
|
sampling_timesteps: 50 |
|
ddim_sampling_eta: 1.0 |
|
stabilization_level: 10 |
|
|
|
architecture: |
|
network_size: 64 |
|
|