File size: 16,635 Bytes
27ca8b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
from typing import Optional
import wandb
import numpy as np
import torch

import matplotlib.pyplot as plt
import cv2
import matplotlib.pyplot as plt
from tqdm import trange, tqdm
import matplotlib.animation as animation
from pathlib import Path

plt.set_loglevel("warning")

from torchmetrics.functional import mean_squared_error, peak_signal_noise_ratio
from torchmetrics.functional import (
    structural_similarity_index_measure,
    universal_image_quality_index,
)
from algorithms.common.metrics import (
    FrechetVideoDistance,
    LearnedPerceptualImagePatchSimilarity,
    FrechetInceptionDistance,
)


# FIXME: clean up & check this util
def log_video(
    observation_hat,
    observation_gt=None,
    step=0,
    namespace="train",
    prefix="video",
    context_frames=0,
    color=(255, 0, 0),
    logger=None,
):
    """
    take in video tensors in range [-1, 1] and log into wandb

    :param observation_hat: predicted observation tensor of shape (frame, batch, channel, height, width)
    :param observation_gt: ground-truth observation tensor of shape (frame, batch, channel, height, width)
    :param step: an int indicating the step number
    :param namespace: a string specify a name space this video logging falls under, e.g. train, val
    :param prefix: a string specify a prefix for the video name
    :param context_frames: an int indicating how many frames in observation_hat are ground truth given as context
    :param color: a tuple of 3 numbers specifying the color of the border for ground truth frames
    :param logger: optional logger to use. use global wandb if not specified
    """
    if not logger:
        logger = wandb
    
        # observation_gt = torch.zeros_like(observation_hat)
    # observation_hat[:context_frames] = observation_gt[:context_frames]
    # Add red border of 1 pixel width to the context frames
    # for i, c in enumerate(color):
    #     c = c / 255.0
    #     observation_hat[:context_frames, :, i, [0, -1], :] = c
    #     observation_hat[:context_frames, :, i, :, [0, -1]] = c

    #     if observation_gt is not None:
    #         observation_gt[:context_frames, :, i, [0, -1], :] = c
    #         observation_gt[:context_frames, :, i, :, [0, -1]] = c
    
    if observation_gt is not None:
        video = torch.cat([observation_hat, observation_gt], -2).detach().cpu().numpy()
    else:
        video = torch.cat([observation_hat], -1).detach().cpu().numpy()
    video = np.transpose(np.clip(video, a_min=0.0, a_max=1.0) * 255, (1, 0, 2, 3, 4)).astype(np.uint8)
    # video[..., 1:] = video[..., :1]  # remove framestack, only visualize current frame
    n_samples = len(video)
    # use wandb directly here since pytorch lightning doesn't support logging videos yet
    for i in range(n_samples):
        logger.log(
            {
                f"{namespace}/{prefix}_{i}": wandb.Video(video[i], fps=5),
                f"trainer/global_step": step,
            }
        )


def get_validation_metrics_for_videos(
    observation_hat,
    observation_gt,
    lpips_model: Optional[LearnedPerceptualImagePatchSimilarity] = None,
    fid_model: Optional[FrechetInceptionDistance] = None,
    fvd_model: Optional[FrechetVideoDistance] = None,
):
    """
    :param observation_hat: predicted observation tensor of shape (frame, batch, channel, height, width)
    :param observation_gt: ground-truth observation tensor of shape (frame, batch, channel, height, width)
    :param lpips_model: a LearnedPerceptualImagePatchSimilarity object from algorithm.common.metrics
    :param fid_model: a FrechetInceptionDistance object  from algorithm.common.metrics
    :param fvd_model: a FrechetVideoDistance object  from algorithm.common.metrics
    :return: a tuple of metrics
    """
    frame, batch, channel, height, width = observation_hat.shape
    output_dict = {}
    observation_gt = observation_gt.type_as(observation_hat)  # some metrics don't fully support fp16

    if frame < 9:
        fvd_model = None  # FVD requires at least 9 frames

    observation_hat = observation_hat.float()
    observation_gt = observation_gt.float()

    # observation_hat = observation_hat.float().to(next(lpips_model.parameters()).device)
    # observation_gt = observation_gt.float().to(next(lpips_model.parameters()).device)
    # if fvd_model is not None:
    #     output_dict["fvd"] = fvd_model.compute(torch.clamp(observation_hat, -1.0, 1.0), torch.clamp(observation_gt, -1.0, 1.0))

    frame_wise_psnr = []
    for f in range(observation_hat.shape[0]):
        frame_wise_psnr.append(peak_signal_noise_ratio(observation_hat[f], observation_gt[f], data_range=2.0))
    frame_wise_psnr = torch.stack(frame_wise_psnr)

    output_dict["frame_wise_psnr"] = frame_wise_psnr
    observation_hat = observation_hat.view(-1, channel, height, width)
    observation_gt = observation_gt.view(-1, channel, height, width)

    output_dict["mse"] = mean_squared_error(observation_hat, observation_gt)

    output_dict["psnr"] = peak_signal_noise_ratio(observation_hat, observation_gt, data_range=2.0)
    # output_dict["ssim"] = structural_similarity_index_measure(observation_hat, observation_gt, data_range=2.0)
    # output_dict["uiqi"] = universal_image_quality_index(observation_hat, observation_gt)
    # operations for LPIPS and FID
    observation_hat = torch.clamp(observation_hat, -1.0, 1.0)
    observation_gt = torch.clamp(observation_gt, -1.0, 1.0)

    if lpips_model is not None:
        lpips_model.update(observation_hat, observation_gt)
        lpips = lpips_model.compute().item()
        # Reset the states of non-functional metrics
        output_dict["lpips"] = lpips
        lpips_model.reset()

    if fid_model is not None:
        observation_hat_uint8 = ((observation_hat + 1.0) / 2 * 255).type(torch.uint8)
        observation_gt_uint8 = ((observation_gt + 1.0) / 2 * 255).type(torch.uint8)
        fid_model.update(observation_gt_uint8, real=True)
        fid_model.update(observation_hat_uint8, real=False)
        fid = fid_model.compute()
        output_dict["fid"] = fid
        # Reset the states of non-functional metrics
        fid_model.reset()

    return output_dict


def is_grid_env(env_id):
    return "maze2d" in env_id or "diagonal2d" in env_id


def get_maze_grid(env_id):
    # import gym
    # maze_string = gym.make(env_id).str_maze_spec
    if "large" in env_id:
        maze_string = "############\\#OOOO#OOOOO#\\#O##O#O#O#O#\\#OOOOOO#OOO#\\#O####O###O#\\#OO#O#OOOOO#\\##O#O#O#O###\\#OO#OOO#OGO#\\############"
    if "medium" in env_id:
        maze_string = "########\\#OO##OO#\\#OO#OOO#\\##OOO###\\#OO#OOO#\\#O#OO#O#\\#OOO#OG#\\########"
    if "umaze" in env_id:
        maze_string = "#####\\#GOO#\\###O#\\#OOO#\\#####"
    lines = maze_string.split("\\")
    grid = [line[1:-1] for line in lines]
    return grid[1:-1]


def get_random_start_goal(env_id, batch_size):
    maze_grid = get_maze_grid(env_id)
    s2i = {"O": 0, "#": 1, "G": 2}
    maze_grid = [[s2i[s] for s in r] for r in maze_grid]
    maze_grid = np.array(maze_grid)
    x, y = np.nonzero(maze_grid == 0)
    indices = np.random.randint(len(x), size=batch_size)
    start = np.stack([x[indices], y[indices]], -1) + 1
    x, y = np.nonzero(maze_grid == 2)
    goal = np.concatenate([x, y], -1)
    goal = np.tile(goal[None, :], (batch_size, 1)) + 1
    return start, goal


def plot_maze_layout(ax, maze_grid):
    ax.clear()

    if maze_grid is not None:
        for i, row in enumerate(maze_grid):
            for j, cell in enumerate(row):
                if cell == "#":
                    square = plt.Rectangle((i + 0.5, j + 0.5), 1, 1, edgecolor="black", facecolor="black")
                    ax.add_patch(square)

    ax.set_aspect("equal")
    ax.grid(True, color="white", linewidth=4)
    ax.set_axisbelow(True)
    ax.spines["top"].set_linewidth(4)
    ax.spines["right"].set_linewidth(4)
    ax.spines["bottom"].set_linewidth(4)
    ax.spines["left"].set_linewidth(4)
    ax.set_facecolor("lightgray")
    ax.tick_params(
        axis="both",
        which="both",
        bottom=False,
        top=False,
        left=False,
        right=False,
        labelbottom=False,
        labelleft=False,
    )
    ax.set_xticks(np.arange(0.5, len(maze_grid) + 0.5))
    ax.set_yticks(np.arange(0.5, len(maze_grid[0]) + 0.5))
    ax.set_xlim(0.5, len(maze_grid) + 0.5)
    ax.set_ylim(0.5, len(maze_grid[0]) + 0.5)
    ax.grid(True, color="white", which="minor", linewidth=4)


def plot_start_goal(ax, start_goal: None):
    def draw_star(center, radius, num_points=5, color="black"):
        angles = np.linspace(0.0, 2 * np.pi, num_points, endpoint=False) + 5 * np.pi / (2 * num_points)
        inner_radius = radius / 2.0

        points = []
        for angle in angles:
            points.extend(
                [
                    center[0] + radius * np.cos(angle),
                    center[1] + radius * np.sin(angle),
                    center[0] + inner_radius * np.cos(angle + np.pi / num_points),
                    center[1] + inner_radius * np.sin(angle + np.pi / num_points),
                ]
            )

        star = plt.Polygon(np.array(points).reshape(-1, 2), color=color)
        ax.add_patch(star)

    start_x, start_y = start_goal[0]
    start_outer_circle = plt.Circle((start_x, start_y), 0.16, facecolor="white", edgecolor="black")
    ax.add_patch(start_outer_circle)
    start_inner_circle = plt.Circle((start_x, start_y), 0.08, color="black")
    ax.add_patch(start_inner_circle)

    goal_x, goal_y = start_goal[1]
    goal_outer_circle = plt.Circle((goal_x, goal_y), 0.16, facecolor="white", edgecolor="black")
    ax.add_patch(goal_outer_circle)
    draw_star((goal_x, goal_y), radius=0.08)


def make_trajectory_images(env_id, trajectory, batch_size, start, goal, plot_end_points=True):
    images = []
    for batch_idx in range(batch_size):
        fig, ax = plt.subplots()
        if is_grid_env(env_id):
            maze_grid = get_maze_grid(env_id)
        else:
            maze_grid = None
        plot_maze_layout(ax, maze_grid)
        ax.scatter(trajectory[:, batch_idx, 0], trajectory[:, batch_idx, 1], c=np.arange(len(trajectory)), cmap="Reds"),
        if plot_end_points:
            start_goal = (start[batch_idx], goal[batch_idx])
            plot_start_goal(ax, start_goal)
        # plt.title(f"sample_{batch_idx}")
        fig.tight_layout()
        fig.canvas.draw()
        img_shape = fig.canvas.get_width_height()[::-1] + (4,)
        img = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8).copy().reshape(img_shape)
        images.append(img)

        plt.close()
    return images


def make_convergence_animation(
    env_id,
    plan_history,
    trajectory,
    start,
    goal,
    open_loop_horizon,
    namespace,
    interval=100,
    plot_end_points=True,
    batch_idx=0,
):
    # - plan_history: contains for each time step all the MPC predicted plans for each pyramid noise level.
    #                 Structured as a list of length (episode_len // open_loop_horizon), where each
    #                 element corresponds to a control_time_step and stores a list of length pyramid_height,
    #                 where each element is a plan at a different pyramid noise level and stored as a tensor of
    #                 shape (episode_len // open_loop_horizon - control_time_step,
    #                        batch_size, x_stacked_shape)

    # select index and prune history
    start, goal = start[batch_idx], goal[batch_idx]
    trajectory = trajectory[:, batch_idx]
    plan_history = [[pm[:, batch_idx] for pm in pt] for pt in plan_history]
    trajectory, plan_history = prune_history(plan_history, trajectory, goal, open_loop_horizon)

    # animate the convergence of the first plan
    fig, ax = plt.subplots()
    if "large" in env_id:
        fig.set_size_inches(3.5, 5)
    else:
        fig.set_size_inches(3, 3)
    ax.set_axis_off()
    fig.subplots_adjust(left=0, bottom=0, right=1, top=1)

    if is_grid_env(env_id):
        maze_grid = get_maze_grid(env_id)
    else:
        maze_grid = None

    def update(frame):
        plot_maze_layout(ax, maze_grid)

        plan_history_m = plan_history[0][frame]
        plan_history_m = plan_history_m.numpy()
        ax.scatter(
            plan_history_m[:, 0],
            plan_history_m[:, 1],
            c=np.arange(len(plan_history_m))[::-1],
            cmap="Reds",
        )

        if plot_end_points:
            plot_start_goal(ax, (start, goal))

    frames = tqdm(range(len(plan_history[0])), desc="Making convergence animation")
    ani = animation.FuncAnimation(fig, update, frames=frames, interval=interval)
    prefix = wandb.run.id if wandb.run is not None else env_id
    filename = f"/tmp/{prefix}_{namespace}_convergence.mp4"
    ani.save(filename, writer="ffmpeg", fps=5)
    return filename


def prune_history(plan_history, trajectory, goal, open_loop_horizon):
    dist = np.linalg.norm(
        trajectory[:, :2] - np.array(goal)[None],
        axis=-1,
    )
    reached = dist < 0.2
    if reached.any():
        cap_idx = np.argmax(reached)
        trajectory = trajectory[: cap_idx + open_loop_horizon + 1]
        plan_history = plan_history[: cap_idx // open_loop_horizon + 2]

    pruned_plan_history = []
    for plans in plan_history:
        pruned_plan_history.append([])
        for m in range(len(plans)):
            plan = plans[m]
            pruned_plan_history[-1].append(plan)
        plan = pruned_plan_history[-1][-1]
        dist = np.linalg.norm(plan.numpy()[:, :2] - np.array(goal)[None], axis=-1)
        reached = dist < 0.2
        if reached.any():
            cap_idx = np.argmax(reached) + 1
            pruned_plan_history[-1] = [p[:cap_idx] for p in pruned_plan_history[-1]]
    return trajectory, pruned_plan_history


def make_mpc_animation(
    env_id,
    plan_history,
    trajectory,
    start,
    goal,
    open_loop_horizon,
    namespace,
    interval=100,
    plot_end_points=True,
    batch_idx=0,
):
    # - plan_history: contains for each time step all the MPC predicted plans for each pyramid noise level.
    #                 Structured as a list of length (episode_len // open_loop_horizon), where each
    #                 element corresponds to a control_time_step and stores a list of length pyramid_height,
    #                 where each element is a plan at a different pyramid noise level and stored as a tensor of
    #                 shape (episode_len // open_loop_horizon - control_time_step,
    #                        batch_size, x_stacked_shape)

    # select index and prune history
    start, goal = start[batch_idx], goal[batch_idx]
    trajectory = trajectory[:, batch_idx]
    plan_history = [[pm[:, batch_idx] for pm in pt] for pt in plan_history]
    trajectory, plan_history = prune_history(plan_history, trajectory, goal, open_loop_horizon)

    # animate the convergence of the plans
    fig, ax = plt.subplots()
    if "large" in env_id:
        fig.set_size_inches(3.5, 5)
    else:
        fig.set_size_inches(3, 3)
    ax.set_axis_off()
    fig.subplots_adjust(left=0, bottom=0, right=1, top=1)
    trajectory_colors = np.linspace(0, 1, len(trajectory))

    if is_grid_env(env_id):
        maze_grid = get_maze_grid(env_id)
    else:
        maze_grid = None

    def update(frame):
        control_time_step = 0
        while frame >= 0:
            frame -= len(plan_history[control_time_step])
            control_time_step += 1
        control_time_step -= 1
        m = frame + len(plan_history[control_time_step])
        num_steps_taken = 1 + open_loop_horizon * control_time_step
        plot_maze_layout(ax, maze_grid)

        plan_history_m = plan_history[control_time_step][m]
        plan_history_m = plan_history_m.numpy()
        ax.scatter(
            trajectory[:num_steps_taken, 0],
            trajectory[:num_steps_taken, 1],
            c=trajectory_colors[:num_steps_taken],
            cmap="Blues",
        )
        ax.scatter(
            plan_history_m[:, 0],
            plan_history_m[:, 1],
            c=np.arange(len(plan_history_m))[::-1],
            cmap="Reds",
        )

        if plot_end_points:
            plot_start_goal(ax, (start, goal))

    num_frames = sum([len(p) for p in plan_history])
    frames = tqdm(range(num_frames), desc="Making MPC animation")
    ani = animation.FuncAnimation(fig, update, frames=frames, interval=interval)
    prefix = wandb.run.id if wandb.run is not None else env_id
    filename = f"/tmp/{prefix}_{namespace}_mpc.mp4"
    ani.save(filename, writer="ffmpeg", fps=5)

    return filename