File size: 16,635 Bytes
27ca8b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 |
from typing import Optional
import wandb
import numpy as np
import torch
import matplotlib.pyplot as plt
import cv2
import matplotlib.pyplot as plt
from tqdm import trange, tqdm
import matplotlib.animation as animation
from pathlib import Path
plt.set_loglevel("warning")
from torchmetrics.functional import mean_squared_error, peak_signal_noise_ratio
from torchmetrics.functional import (
structural_similarity_index_measure,
universal_image_quality_index,
)
from algorithms.common.metrics import (
FrechetVideoDistance,
LearnedPerceptualImagePatchSimilarity,
FrechetInceptionDistance,
)
# FIXME: clean up & check this util
def log_video(
observation_hat,
observation_gt=None,
step=0,
namespace="train",
prefix="video",
context_frames=0,
color=(255, 0, 0),
logger=None,
):
"""
take in video tensors in range [-1, 1] and log into wandb
:param observation_hat: predicted observation tensor of shape (frame, batch, channel, height, width)
:param observation_gt: ground-truth observation tensor of shape (frame, batch, channel, height, width)
:param step: an int indicating the step number
:param namespace: a string specify a name space this video logging falls under, e.g. train, val
:param prefix: a string specify a prefix for the video name
:param context_frames: an int indicating how many frames in observation_hat are ground truth given as context
:param color: a tuple of 3 numbers specifying the color of the border for ground truth frames
:param logger: optional logger to use. use global wandb if not specified
"""
if not logger:
logger = wandb
# observation_gt = torch.zeros_like(observation_hat)
# observation_hat[:context_frames] = observation_gt[:context_frames]
# Add red border of 1 pixel width to the context frames
# for i, c in enumerate(color):
# c = c / 255.0
# observation_hat[:context_frames, :, i, [0, -1], :] = c
# observation_hat[:context_frames, :, i, :, [0, -1]] = c
# if observation_gt is not None:
# observation_gt[:context_frames, :, i, [0, -1], :] = c
# observation_gt[:context_frames, :, i, :, [0, -1]] = c
if observation_gt is not None:
video = torch.cat([observation_hat, observation_gt], -2).detach().cpu().numpy()
else:
video = torch.cat([observation_hat], -1).detach().cpu().numpy()
video = np.transpose(np.clip(video, a_min=0.0, a_max=1.0) * 255, (1, 0, 2, 3, 4)).astype(np.uint8)
# video[..., 1:] = video[..., :1] # remove framestack, only visualize current frame
n_samples = len(video)
# use wandb directly here since pytorch lightning doesn't support logging videos yet
for i in range(n_samples):
logger.log(
{
f"{namespace}/{prefix}_{i}": wandb.Video(video[i], fps=5),
f"trainer/global_step": step,
}
)
def get_validation_metrics_for_videos(
observation_hat,
observation_gt,
lpips_model: Optional[LearnedPerceptualImagePatchSimilarity] = None,
fid_model: Optional[FrechetInceptionDistance] = None,
fvd_model: Optional[FrechetVideoDistance] = None,
):
"""
:param observation_hat: predicted observation tensor of shape (frame, batch, channel, height, width)
:param observation_gt: ground-truth observation tensor of shape (frame, batch, channel, height, width)
:param lpips_model: a LearnedPerceptualImagePatchSimilarity object from algorithm.common.metrics
:param fid_model: a FrechetInceptionDistance object from algorithm.common.metrics
:param fvd_model: a FrechetVideoDistance object from algorithm.common.metrics
:return: a tuple of metrics
"""
frame, batch, channel, height, width = observation_hat.shape
output_dict = {}
observation_gt = observation_gt.type_as(observation_hat) # some metrics don't fully support fp16
if frame < 9:
fvd_model = None # FVD requires at least 9 frames
observation_hat = observation_hat.float()
observation_gt = observation_gt.float()
# observation_hat = observation_hat.float().to(next(lpips_model.parameters()).device)
# observation_gt = observation_gt.float().to(next(lpips_model.parameters()).device)
# if fvd_model is not None:
# output_dict["fvd"] = fvd_model.compute(torch.clamp(observation_hat, -1.0, 1.0), torch.clamp(observation_gt, -1.0, 1.0))
frame_wise_psnr = []
for f in range(observation_hat.shape[0]):
frame_wise_psnr.append(peak_signal_noise_ratio(observation_hat[f], observation_gt[f], data_range=2.0))
frame_wise_psnr = torch.stack(frame_wise_psnr)
output_dict["frame_wise_psnr"] = frame_wise_psnr
observation_hat = observation_hat.view(-1, channel, height, width)
observation_gt = observation_gt.view(-1, channel, height, width)
output_dict["mse"] = mean_squared_error(observation_hat, observation_gt)
output_dict["psnr"] = peak_signal_noise_ratio(observation_hat, observation_gt, data_range=2.0)
# output_dict["ssim"] = structural_similarity_index_measure(observation_hat, observation_gt, data_range=2.0)
# output_dict["uiqi"] = universal_image_quality_index(observation_hat, observation_gt)
# operations for LPIPS and FID
observation_hat = torch.clamp(observation_hat, -1.0, 1.0)
observation_gt = torch.clamp(observation_gt, -1.0, 1.0)
if lpips_model is not None:
lpips_model.update(observation_hat, observation_gt)
lpips = lpips_model.compute().item()
# Reset the states of non-functional metrics
output_dict["lpips"] = lpips
lpips_model.reset()
if fid_model is not None:
observation_hat_uint8 = ((observation_hat + 1.0) / 2 * 255).type(torch.uint8)
observation_gt_uint8 = ((observation_gt + 1.0) / 2 * 255).type(torch.uint8)
fid_model.update(observation_gt_uint8, real=True)
fid_model.update(observation_hat_uint8, real=False)
fid = fid_model.compute()
output_dict["fid"] = fid
# Reset the states of non-functional metrics
fid_model.reset()
return output_dict
def is_grid_env(env_id):
return "maze2d" in env_id or "diagonal2d" in env_id
def get_maze_grid(env_id):
# import gym
# maze_string = gym.make(env_id).str_maze_spec
if "large" in env_id:
maze_string = "############\\#OOOO#OOOOO#\\#O##O#O#O#O#\\#OOOOOO#OOO#\\#O####O###O#\\#OO#O#OOOOO#\\##O#O#O#O###\\#OO#OOO#OGO#\\############"
if "medium" in env_id:
maze_string = "########\\#OO##OO#\\#OO#OOO#\\##OOO###\\#OO#OOO#\\#O#OO#O#\\#OOO#OG#\\########"
if "umaze" in env_id:
maze_string = "#####\\#GOO#\\###O#\\#OOO#\\#####"
lines = maze_string.split("\\")
grid = [line[1:-1] for line in lines]
return grid[1:-1]
def get_random_start_goal(env_id, batch_size):
maze_grid = get_maze_grid(env_id)
s2i = {"O": 0, "#": 1, "G": 2}
maze_grid = [[s2i[s] for s in r] for r in maze_grid]
maze_grid = np.array(maze_grid)
x, y = np.nonzero(maze_grid == 0)
indices = np.random.randint(len(x), size=batch_size)
start = np.stack([x[indices], y[indices]], -1) + 1
x, y = np.nonzero(maze_grid == 2)
goal = np.concatenate([x, y], -1)
goal = np.tile(goal[None, :], (batch_size, 1)) + 1
return start, goal
def plot_maze_layout(ax, maze_grid):
ax.clear()
if maze_grid is not None:
for i, row in enumerate(maze_grid):
for j, cell in enumerate(row):
if cell == "#":
square = plt.Rectangle((i + 0.5, j + 0.5), 1, 1, edgecolor="black", facecolor="black")
ax.add_patch(square)
ax.set_aspect("equal")
ax.grid(True, color="white", linewidth=4)
ax.set_axisbelow(True)
ax.spines["top"].set_linewidth(4)
ax.spines["right"].set_linewidth(4)
ax.spines["bottom"].set_linewidth(4)
ax.spines["left"].set_linewidth(4)
ax.set_facecolor("lightgray")
ax.tick_params(
axis="both",
which="both",
bottom=False,
top=False,
left=False,
right=False,
labelbottom=False,
labelleft=False,
)
ax.set_xticks(np.arange(0.5, len(maze_grid) + 0.5))
ax.set_yticks(np.arange(0.5, len(maze_grid[0]) + 0.5))
ax.set_xlim(0.5, len(maze_grid) + 0.5)
ax.set_ylim(0.5, len(maze_grid[0]) + 0.5)
ax.grid(True, color="white", which="minor", linewidth=4)
def plot_start_goal(ax, start_goal: None):
def draw_star(center, radius, num_points=5, color="black"):
angles = np.linspace(0.0, 2 * np.pi, num_points, endpoint=False) + 5 * np.pi / (2 * num_points)
inner_radius = radius / 2.0
points = []
for angle in angles:
points.extend(
[
center[0] + radius * np.cos(angle),
center[1] + radius * np.sin(angle),
center[0] + inner_radius * np.cos(angle + np.pi / num_points),
center[1] + inner_radius * np.sin(angle + np.pi / num_points),
]
)
star = plt.Polygon(np.array(points).reshape(-1, 2), color=color)
ax.add_patch(star)
start_x, start_y = start_goal[0]
start_outer_circle = plt.Circle((start_x, start_y), 0.16, facecolor="white", edgecolor="black")
ax.add_patch(start_outer_circle)
start_inner_circle = plt.Circle((start_x, start_y), 0.08, color="black")
ax.add_patch(start_inner_circle)
goal_x, goal_y = start_goal[1]
goal_outer_circle = plt.Circle((goal_x, goal_y), 0.16, facecolor="white", edgecolor="black")
ax.add_patch(goal_outer_circle)
draw_star((goal_x, goal_y), radius=0.08)
def make_trajectory_images(env_id, trajectory, batch_size, start, goal, plot_end_points=True):
images = []
for batch_idx in range(batch_size):
fig, ax = plt.subplots()
if is_grid_env(env_id):
maze_grid = get_maze_grid(env_id)
else:
maze_grid = None
plot_maze_layout(ax, maze_grid)
ax.scatter(trajectory[:, batch_idx, 0], trajectory[:, batch_idx, 1], c=np.arange(len(trajectory)), cmap="Reds"),
if plot_end_points:
start_goal = (start[batch_idx], goal[batch_idx])
plot_start_goal(ax, start_goal)
# plt.title(f"sample_{batch_idx}")
fig.tight_layout()
fig.canvas.draw()
img_shape = fig.canvas.get_width_height()[::-1] + (4,)
img = np.frombuffer(fig.canvas.buffer_rgba(), dtype=np.uint8).copy().reshape(img_shape)
images.append(img)
plt.close()
return images
def make_convergence_animation(
env_id,
plan_history,
trajectory,
start,
goal,
open_loop_horizon,
namespace,
interval=100,
plot_end_points=True,
batch_idx=0,
):
# - plan_history: contains for each time step all the MPC predicted plans for each pyramid noise level.
# Structured as a list of length (episode_len // open_loop_horizon), where each
# element corresponds to a control_time_step and stores a list of length pyramid_height,
# where each element is a plan at a different pyramid noise level and stored as a tensor of
# shape (episode_len // open_loop_horizon - control_time_step,
# batch_size, x_stacked_shape)
# select index and prune history
start, goal = start[batch_idx], goal[batch_idx]
trajectory = trajectory[:, batch_idx]
plan_history = [[pm[:, batch_idx] for pm in pt] for pt in plan_history]
trajectory, plan_history = prune_history(plan_history, trajectory, goal, open_loop_horizon)
# animate the convergence of the first plan
fig, ax = plt.subplots()
if "large" in env_id:
fig.set_size_inches(3.5, 5)
else:
fig.set_size_inches(3, 3)
ax.set_axis_off()
fig.subplots_adjust(left=0, bottom=0, right=1, top=1)
if is_grid_env(env_id):
maze_grid = get_maze_grid(env_id)
else:
maze_grid = None
def update(frame):
plot_maze_layout(ax, maze_grid)
plan_history_m = plan_history[0][frame]
plan_history_m = plan_history_m.numpy()
ax.scatter(
plan_history_m[:, 0],
plan_history_m[:, 1],
c=np.arange(len(plan_history_m))[::-1],
cmap="Reds",
)
if plot_end_points:
plot_start_goal(ax, (start, goal))
frames = tqdm(range(len(plan_history[0])), desc="Making convergence animation")
ani = animation.FuncAnimation(fig, update, frames=frames, interval=interval)
prefix = wandb.run.id if wandb.run is not None else env_id
filename = f"/tmp/{prefix}_{namespace}_convergence.mp4"
ani.save(filename, writer="ffmpeg", fps=5)
return filename
def prune_history(plan_history, trajectory, goal, open_loop_horizon):
dist = np.linalg.norm(
trajectory[:, :2] - np.array(goal)[None],
axis=-1,
)
reached = dist < 0.2
if reached.any():
cap_idx = np.argmax(reached)
trajectory = trajectory[: cap_idx + open_loop_horizon + 1]
plan_history = plan_history[: cap_idx // open_loop_horizon + 2]
pruned_plan_history = []
for plans in plan_history:
pruned_plan_history.append([])
for m in range(len(plans)):
plan = plans[m]
pruned_plan_history[-1].append(plan)
plan = pruned_plan_history[-1][-1]
dist = np.linalg.norm(plan.numpy()[:, :2] - np.array(goal)[None], axis=-1)
reached = dist < 0.2
if reached.any():
cap_idx = np.argmax(reached) + 1
pruned_plan_history[-1] = [p[:cap_idx] for p in pruned_plan_history[-1]]
return trajectory, pruned_plan_history
def make_mpc_animation(
env_id,
plan_history,
trajectory,
start,
goal,
open_loop_horizon,
namespace,
interval=100,
plot_end_points=True,
batch_idx=0,
):
# - plan_history: contains for each time step all the MPC predicted plans for each pyramid noise level.
# Structured as a list of length (episode_len // open_loop_horizon), where each
# element corresponds to a control_time_step and stores a list of length pyramid_height,
# where each element is a plan at a different pyramid noise level and stored as a tensor of
# shape (episode_len // open_loop_horizon - control_time_step,
# batch_size, x_stacked_shape)
# select index and prune history
start, goal = start[batch_idx], goal[batch_idx]
trajectory = trajectory[:, batch_idx]
plan_history = [[pm[:, batch_idx] for pm in pt] for pt in plan_history]
trajectory, plan_history = prune_history(plan_history, trajectory, goal, open_loop_horizon)
# animate the convergence of the plans
fig, ax = plt.subplots()
if "large" in env_id:
fig.set_size_inches(3.5, 5)
else:
fig.set_size_inches(3, 3)
ax.set_axis_off()
fig.subplots_adjust(left=0, bottom=0, right=1, top=1)
trajectory_colors = np.linspace(0, 1, len(trajectory))
if is_grid_env(env_id):
maze_grid = get_maze_grid(env_id)
else:
maze_grid = None
def update(frame):
control_time_step = 0
while frame >= 0:
frame -= len(plan_history[control_time_step])
control_time_step += 1
control_time_step -= 1
m = frame + len(plan_history[control_time_step])
num_steps_taken = 1 + open_loop_horizon * control_time_step
plot_maze_layout(ax, maze_grid)
plan_history_m = plan_history[control_time_step][m]
plan_history_m = plan_history_m.numpy()
ax.scatter(
trajectory[:num_steps_taken, 0],
trajectory[:num_steps_taken, 1],
c=trajectory_colors[:num_steps_taken],
cmap="Blues",
)
ax.scatter(
plan_history_m[:, 0],
plan_history_m[:, 1],
c=np.arange(len(plan_history_m))[::-1],
cmap="Reds",
)
if plot_end_points:
plot_start_goal(ax, (start, goal))
num_frames = sum([len(p) for p in plan_history])
frames = tqdm(range(num_frames), desc="Making MPC animation")
ani = animation.FuncAnimation(fig, update, frames=frames, interval=interval)
prefix = wandb.run.id if wandb.run is not None else env_id
filename = f"/tmp/{prefix}_{namespace}_mpc.mp4"
ani.save(filename, writer="ffmpeg", fps=5)
return filename
|