File size: 8,243 Bytes
27ca8b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
"""
This repo is forked from [Boyuan Chen](https://boyuan.space/)'s research
template [repo](https://github.com/buoyancy99/research-template).
By its MIT license, you must keep the above sentence in `README.md`
and the `LICENSE` file to credit the author.
Main file for the project. This will create and run new experiments and load checkpoints from wandb.
Borrowed part of the code from David Charatan and wandb.
"""
import sys
import subprocess
import time
from pathlib import Path
import hydra
from omegaconf import DictConfig, OmegaConf
from omegaconf.omegaconf import open_dict
from utils.print_utils import cyan
from utils.ckpt_utils import download_latest_checkpoint, is_run_id
from utils.cluster_utils import submit_slurm_job
from utils.distributed_utils import is_rank_zero
def get_latest_checkpoint(checkpoint_folder: Path, pattern: str = '*.ckpt'):
# 获取文件夹中所有符合 pattern 的文件
checkpoint_files = list(checkpoint_folder.glob(pattern))
if not checkpoint_files:
return None # 如果没有找到 checkpoint 文件,返回 None
# 根据文件修改时间(st_mtime)选取最新的文件
latest_checkpoint = max(checkpoint_files, key=lambda f: f.stat().st_mtime)
return latest_checkpoint
def run_local(cfg: DictConfig):
# delay some imports in case they are not needed in non-local envs for submission
from experiments import build_experiment
from utils.wandb_utils import OfflineWandbLogger, SpaceEfficientWandbLogger
# Get yaml names
hydra_cfg = hydra.core.hydra_config.HydraConfig.get()
cfg_choice = OmegaConf.to_container(hydra_cfg.runtime.choices)
with open_dict(cfg):
if cfg_choice["experiment"] is not None:
cfg.experiment._name = cfg_choice["experiment"]
if cfg_choice["dataset"] is not None:
cfg.dataset._name = cfg_choice["dataset"]
if cfg_choice["algorithm"] is not None:
cfg.algorithm._name = cfg_choice["algorithm"]
# import pdb;pdb.set_trace()
# Set up the output directory.
output_dir = getattr(cfg, "output_dir", None)
if output_dir is not None:
OmegaConf.set_readonly(hydra_cfg, False)
hydra_cfg.runtime.output_dir = output_dir
OmegaConf.set_readonly(hydra_cfg, True)
output_dir = Path(hydra_cfg.runtime.output_dir)
if is_rank_zero:
print(cyan(f"Outputs will be saved to:"), output_dir)
(output_dir.parents[1] / "latest-run").unlink(missing_ok=True)
(output_dir.parents[1] / "latest-run").symlink_to(output_dir, target_is_directory=True)
# Set up logging with wandb.
if cfg.wandb.mode != "disabled":
# If resuming, merge into the existing run on wandb.
resume = cfg.get("resume", None)
name = f"{cfg.name} ({output_dir.parent.name}/{output_dir.name})" if resume is None else None
if "_on_compute_node" in cfg and cfg.cluster.is_compute_node_offline:
logger_cls = OfflineWandbLogger
else:
logger_cls = SpaceEfficientWandbLogger
offline = cfg.wandb.mode != "online"
logger = logger_cls(
name=name,
save_dir=str(output_dir),
offline=offline,
entity=cfg.wandb.entity,
project=cfg.wandb.project,
log_model=False,
config=OmegaConf.to_container(cfg),
id=resume,
resume="auto"
)
else:
logger = None
# Load ckpt
resume = cfg.get("resume", None)
load = cfg.get("load", None)
checkpoint_path = None
load_id = None
if load and not is_run_id(load):
checkpoint_path = load
if resume:
load_id = resume
elif load and is_run_id(load):
load_id = load
else:
load_id = None
if load_id:
run_path = f"{cfg.wandb.entity}/{cfg.wandb.project}/{load_id}"
checkpoint_path = Path("outputs/downloaded") / run_path / "model.ckpt"
checkpoint_path = output_dir / get_latest_checkpoint(output_dir / "checkpoints")
if checkpoint_path and is_rank_zero:
print(f"Will load checkpoint from {checkpoint_path}")
# launch experiment
experiment = build_experiment(cfg, logger, checkpoint_path)
for task in cfg.experiment.tasks:
experiment.exec_task(task)
def run_slurm(cfg: DictConfig):
python_args = " ".join(sys.argv[1:]) + " +_on_compute_node=True"
project_root = Path.cwd()
while not (project_root / ".git").exists():
project_root = project_root.parent
if project_root == Path("/"):
raise Exception("Could not find repo directory!")
slurm_log_dir = submit_slurm_job(
cfg,
python_args,
project_root,
)
if "cluster" in cfg and cfg.cluster.is_compute_node_offline and cfg.wandb.mode == "online":
print("Job submitted to a compute node without internet. This requires manual syncing on login node.")
osh_command_dir = project_root / ".wandb_osh_command_dir"
osh_proc = None
# if click.confirm("Do you want us to run the sync loop for you?", default=True):
osh_proc = subprocess.Popen(["wandb-osh", "--command-dir", osh_command_dir])
print(f"Running wandb-osh in background... PID: {osh_proc.pid}")
print(f"To kill the sync process, run 'kill {osh_proc.pid}' in the terminal.")
print(
f"You can manually start a sync loop later by running the following:",
cyan(f"wandb-osh --command-dir {osh_command_dir}"),
)
print(
"Once the job gets allocated and starts running, we will print a command below "
"for you to trace the errors and outputs: (Ctrl + C to exit without waiting)"
)
msg = f"tail -f {slurm_log_dir}/* \n"
try:
while not list(slurm_log_dir.glob("*.out")) and not list(slurm_log_dir.glob("*.err")):
time.sleep(1)
print(cyan("To trace the outputs and errors, run the following command:"), msg)
except KeyboardInterrupt:
print("Keyboard interrupt detected. Exiting...")
print(
cyan("To trace the outputs and errors, manually wait for the job to start and run the following command:"),
msg,
)
@hydra.main(
version_base=None,
config_path="configurations",
config_name="config",
)
def run(cfg: DictConfig):
if "_on_compute_node" in cfg and cfg.cluster.is_compute_node_offline:
with open_dict(cfg):
if cfg.cluster.is_compute_node_offline and cfg.wandb.mode == "online":
cfg.wandb.mode = "offline"
if "name" not in cfg:
raise ValueError("must specify a name for the run with command line argument '+name=[name]'")
if not cfg.wandb.get("entity", None):
raise ValueError(
"must specify wandb entity in 'configurations/config.yaml' or with command line"
" argument 'wandb.entity=[entity]' \n An entity is your wandb user name or group"
" name. This is used for logging. If you don't have an wandb account, please signup at https://wandb.ai/"
)
if cfg.wandb.project is None:
cfg.wandb.project = str(Path(__file__).parent.name)
# If resuming or loading a wandb ckpt and not on a compute node, download the checkpoint.
resume = cfg.get("resume", None)
load = cfg.get("load", None)
if resume and load:
raise ValueError(
"When resuming a wandb run with `resume=[wandb id]`, checkpoint will be loaded from the cloud"
"and `load` should not be specified."
)
if resume:
load_id = resume
elif load and is_run_id(load):
load_id = load
else:
load_id = None
# if load_id and "_on_compute_node" not in cfg:
# run_path = f"{cfg.wandb.entity}/{cfg.wandb.project}/{load_id}"
# download_latest_checkpoint(run_path, Path("outputs/downloaded"))
if "cluster" in cfg and not "_on_compute_node" in cfg:
print(cyan("Slurm detected, submitting to compute node instead of running locally..."))
run_slurm(cfg)
else:
run_local(cfg)
if __name__ == "__main__":
run() # pylint: disable=no-value-for-parameter
|