import streamlit as st from transformers import AutoTokenizer, AutoModelForCausalLM import os from transformers import pipeline import torch hf_token = os.getenv('HF_API_TOKEN') # Load the Llama 3.1 model and tokenizer model_name = "meta-llama/Meta-Llama-3.1-8B" tokenizer = AutoTokenizer.from_pretrained(model_name, token= hf_token) model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto", token= hf_token) # Streamlit app interface st.title("Llama 3.1 Text Generator") prompt = st.text_area("Enter a prompt:", "Once upon a time") if st.button("Generate"): inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_length=512, top_p=0.9, temperature=0.8) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) st.write(generated_text)