|
import streamlit as st |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import os |
|
hf_token = os.getenv('HF_API_TOKEN') |
|
|
|
model_name = "meta-llama/Meta-Llama-3.1-8B" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name, token= hf_token) |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto",token = hf_token) |
|
|
|
|
|
st.title("Llama 3.1 Text Generator") |
|
prompt = st.text_area("Enter a prompt:", "Once upon a time") |
|
|
|
if st.button("Generate"): |
|
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) |
|
outputs = model.generate(**inputs, max_length=512, top_p=0.9, temperature=0.8) |
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
st.write(generated_text) |
|
|