File size: 5,152 Bytes
9c4b01e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import numpy as np
import cv2
import torch
import dlib
import face_recognition
from torchvision import transforms
from tqdm import tqdm
from dataset.loader import normalize_data
from .config import load_config
from .genconvit import GenConViT
import datetime
# from decord import VideoReader,cpu,gpu
# from decord import VideoReader, cpu

device = "cuda" if torch.cuda.is_available() else "cpu"
# ctx = gpu(0) if torch.cuda.is_available() else cpu(0)
torch.hub.set_dir('./cache')
os.environ["HUGGINGFACE_HUB_CACHE"] = "./cache"

# def load_genconvit(config, net, ed_weight, vae_weight, fp16):
def load_genconvit( net, ed_weight, vae_weight, fp16):

    model = GenConViT(
        # config,
        ed= ed_weight,
        vae= vae_weight, 
        net=net,
        fp16=fp16
    )

    model.to(device)
    model.eval()
    if fp16:
        model.half()

    return model


def face_rec(frames, p=None, klass=None):
    temp_face = np.zeros((len(frames), 224, 224, 3), dtype=np.uint8)
    count = 0
    mod = "cnn" if dlib.DLIB_USE_CUDA else "hog"

    for _, frame in tqdm(enumerate(frames), total=len(frames)):
        frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
        face_locations = face_recognition.face_locations(
            frame, number_of_times_to_upsample=0, model=mod
        )

        for face_location in face_locations:
            if count < len(frames):
                top, right, bottom, left = face_location
                face_image = frame[top:bottom, left:right]
                face_image = cv2.resize(
                    face_image, (224, 224), interpolation=cv2.INTER_AREA
                )
                face_image = cv2.cvtColor(face_image, cv2.COLOR_BGR2RGB)

                temp_face[count] = face_image
                count += 1
            else:
                break

    return ([], 0) if count == 0 else (temp_face[:count], count)


def preprocess_frame(frame):
    df_tensor = torch.tensor(frame, device=device).float()
    df_tensor = df_tensor.permute((0, 3, 1, 2))

    for i in range(len(df_tensor)):
        df_tensor[i] = normalize_data()["vid"](df_tensor[i] / 255.0)

    return df_tensor

def pred_vid(df, model):
    with torch.no_grad():
        return max_prediction_value(torch.softmax(model(df), dim=1).squeeze())



def max_prediction_value(y_pred):
    # Finds the index and value of the maximum prediction value.
    mean_val = torch.mean(y_pred, dim=0,)
    return (
        torch.argmax(mean_val).item(),
        mean_val[0].item()
        if mean_val[0] > mean_val[1]
        else abs(1 - mean_val[1]).item(),
    )


def real_or_fake(prediction):
    return {0: "REAL", 1: "FAKE"}[prediction ^ 1]


# def extract_frames(video_file, frames_nums=15):
#     vr = VideoReader(video_file, ctx=cpu(0))
#     step_size = max(1, len(vr) // frames_nums)  # Calculate the step size between frames
#     return vr.get_batch(
#         list(range(0, len(vr), step_size))[:frames_nums]
#     ).asnumpy()  # seek frames with step_size

def extract_frames(video_file, frames_nums=15):
    cap = cv2.VideoCapture(video_file)
    frames = []
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    step_size = max(1, frame_count // frames_nums)
    for i in range(0, frame_count, step_size):
        cap.set(cv2.CAP_PROP_POS_FRAMES, i)
        ret, frame = cap.read()
        if ret:
            frames.append(frame)
        if len(frames) >= frames_nums:
            break
    cap.release()
    return np.array(frames)

# def extract_frames(video_file, frames_nums=15):
#     vr = VideoReader(video_file, ctx=ctx)
#     step_size = max(1, len(vr) // frames_nums)  # Calculate the step size between frames
#     return vr.get_batch(
#         list(range(0, len(vr), step_size))[:frames_nums]
#     ).asnumpy()  # seek frames with step_size




def df_face(vid, num_frames, net):
    s1 = datetime.datetime.now()
    img = extract_frames(vid, num_frames)
    e1= datetime.datetime.now()
    print("Time taken for frame Extraction:", e1-s1)
    s2 = datetime.datetime.now()
    face, count = face_rec(img)
    e2 = datetime.datetime.now()
    print("Time taken for face recognition:", e2-s2)
    print("Total time taken for image processing:", e2-s1)
    return preprocess_frame(face) if count > 0 else []


def is_video(vid):
    print('IS FILE', os.path.isfile(vid))
    return os.path.isfile(vid) and vid.endswith(
        tuple([".avi", ".mp4", ".mpg", ".mpeg", ".mov"])
    )


def set_result():
    return {
        "video": {
            "name": [],
            "pred": [],
            "klass": [],
            "pred_label": [],
            "correct_label": [],
        }
    }


def store_result(
    result, filename, y, y_val, klass, correct_label=None, compression=None
):
    result["video"]["name"].append(filename)
    result["video"]["pred"].append(y_val)
    result["video"]["klass"].append(klass.lower())
    result["video"]["pred_label"].append(real_or_fake(y))

    if correct_label is not None:
        result["video"]["correct_label"].append(correct_label)

    if compression is not None:
        result["video"]["compression"].append(compression)

    return result