Spaces:
Running
Running
File size: 14,282 Bytes
6ef48c6 59993d0 6ef48c6 d454433 6ef48c6 e90574b edda836 531d6f9 59993d0 e90574b 6ef48c6 e90574b 9d978bc e90574b 531d6f9 f2aca49 531d6f9 36a4f5e 6ef48c6 9d978bc 6ef48c6 9d978bc 6ef48c6 9d978bc 6ef48c6 e90574b 6ef48c6 9d978bc 6ef48c6 e90574b 6ef48c6 36a4f5e 9d978bc 6ef48c6 59993d0 f4bd350 6ef48c6 59993d0 6ef48c6 36a4f5e 9d978bc 6ef48c6 f2aca49 59993d0 f2aca49 6ef48c6 9d978bc 36a4f5e 9d978bc 36a4f5e 6ef48c6 9d978bc 6ef48c6 59993d0 6ef48c6 9d978bc 36a4f5e 9d978bc 59993d0 36a4f5e e90574b 6ef48c6 9d978bc 6ef48c6 e90574b 6ef48c6 e90574b 9d978bc 6ef48c6 f2aca49 6ef48c6 4424462 36a4f5e 4424462 9d978bc 36a4f5e 4424462 36a4f5e 4424462 36a4f5e 6ef48c6 59993d0 9d978bc 6ef48c6 9d978bc e90574b f2aca49 f4bd350 59993d0 f4bd350 6ef48c6 59993d0 6ef48c6 d454433 1d115f5 59993d0 f4bd350 59993d0 9d978bc 59993d0 9d978bc 36a4f5e 59993d0 6ef48c6 59993d0 4e72c55 59993d0 6ef48c6 59993d0 6ef48c6 59993d0 f4bd350 59993d0 f4bd350 59993d0 f4bd350 59993d0 b4fa9b6 6ef48c6 59993d0 36a4f5e 59993d0 85f4370 6ef48c6 e90574b 59993d0 f4bd350 59993d0 b4fa9b6 85f4370 e90574b 6ef48c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 |
import os
import asyncio
import time
from typing import Optional
from datetime import datetime
import httpx
import trafilatura
import gradio as gr
from dateutil import parser as dateparser
from limits import parse
from limits.aio.storage import MemoryStorage
from limits.aio.strategies import MovingWindowRateLimiter
from analytics import record_request, last_n_days_df, last_n_days_avg_time_df
# Configuration
SERPER_API_KEY = os.getenv("SERPER_API_KEY")
SERPER_SEARCH_ENDPOINT = "https://google.serper.dev/search"
SERPER_NEWS_ENDPOINT = "https://google.serper.dev/news"
HEADERS = {"X-API-KEY": SERPER_API_KEY, "Content-Type": "application/json"}
# Rate limiting
storage = MemoryStorage()
limiter = MovingWindowRateLimiter(storage)
rate_limit = parse("360/hour")
async def search_web(
query: str, search_type: str = "search", num_results: Optional[int] = 4
) -> str:
"""
Search the web for information or fresh news, returning extracted content.
This tool can perform two types of searches:
- "search" (default): General web search for diverse, relevant content from various sources
- "news": Specifically searches for fresh news articles and breaking stories
Use "news" mode when looking for:
- Breaking news or very recent events
- Time-sensitive information
- Current affairs and latest developments
- Today's/this week's happenings
Use "search" mode (default) for:
- General information and research
- Technical documentation or guides
- Historical information
- Diverse perspectives from various sources
Args:
query (str): The search query. This is REQUIRED. Examples: "apple inc earnings",
"climate change 2024", "AI developments"
search_type (str): Type of search. This is OPTIONAL. Default is "search".
Options: "search" (general web search) or "news" (fresh news articles).
Use "news" for time-sensitive, breaking news content.
num_results (int): Number of results to fetch. This is OPTIONAL. Default is 4.
Range: 1-20. More results = more context but longer response time.
Returns:
str: Formatted text containing extracted content with metadata (title,
source, date, URL, and main text) for each result, separated by dividers.
Returns error message if API key is missing or search fails.
Examples:
- search_web("OpenAI GPT-5", "news") - Get 5 fresh news articles about OpenAI
- search_web("python tutorial", "search") - Get 4 general results about Python (default count)
- search_web("stock market today", "news", 10) - Get 10 news articles about today's market
- search_web("machine learning basics") - Get 4 general search results (all defaults)
"""
start_time = time.time()
if not SERPER_API_KEY:
await record_request() # Record even failed requests
return "Error: SERPER_API_KEY environment variable is not set. Please set it to use this tool."
# Validate and constrain num_results
if num_results is None:
num_results = 4
num_results = max(1, min(20, num_results))
# Validate search_type
if search_type not in ["search", "news"]:
search_type = "search"
try:
# Check rate limit
if not await limiter.hit(rate_limit, "global"):
print(f"[{datetime.now().isoformat()}] Rate limit exceeded")
duration = time.time() - start_time
await record_request(duration)
return "Error: Rate limit exceeded. Please try again later (limit: 500 requests per hour)."
# Select endpoint based on search type
endpoint = (
SERPER_NEWS_ENDPOINT if search_type == "news" else SERPER_SEARCH_ENDPOINT
)
# Prepare payload
payload = {"q": query, "num": num_results}
if search_type == "news":
payload["type"] = "news"
payload["page"] = 1
async with httpx.AsyncClient(timeout=15) as client:
resp = await client.post(endpoint, headers=HEADERS, json=payload)
if resp.status_code != 200:
duration = time.time() - start_time
await record_request(duration)
return f"Error: Search API returned status {resp.status_code}. Please check your API key and try again."
# Extract results based on search type
if search_type == "news":
results = resp.json().get("news", [])
else:
results = resp.json().get("organic", [])
if not results:
duration = time.time() - start_time
await record_request(duration)
return f"No {search_type} results found for query: '{query}'. Try a different search term or search type."
# Fetch HTML content concurrently
urls = [r["link"] for r in results]
async with httpx.AsyncClient(timeout=20, follow_redirects=True) as client:
tasks = [client.get(u) for u in urls]
responses = await asyncio.gather(*tasks, return_exceptions=True)
# Extract and format content
chunks = []
successful_extractions = 0
for meta, response in zip(results, responses):
if isinstance(response, Exception):
continue
# Extract main text content
body = trafilatura.extract(
response.text, include_formatting=False, include_comments=False
)
if not body:
continue
successful_extractions += 1
print(
f"[{datetime.now().isoformat()}] Successfully extracted content from {meta['link']}"
)
# Format the chunk based on search type
if search_type == "news":
# News results have date and source
try:
date_str = meta.get("date", "")
if date_str:
date_iso = dateparser.parse(date_str, fuzzy=True).strftime(
"%Y-%m-%d"
)
else:
date_iso = "Unknown"
except Exception:
date_iso = "Unknown"
chunk = (
f"## {meta['title']}\n"
f"**Source:** {meta.get('source', 'Unknown')} "
f"**Date:** {date_iso}\n"
f"**URL:** {meta['link']}\n\n"
f"{body.strip()}\n"
)
else:
# Search results don't have date/source but have domain
domain = meta["link"].split("/")[2].replace("www.", "")
chunk = (
f"## {meta['title']}\n"
f"**Domain:** {domain}\n"
f"**URL:** {meta['link']}\n\n"
f"{body.strip()}\n"
)
chunks.append(chunk)
if not chunks:
duration = time.time() - start_time
await record_request(duration)
return f"Found {len(results)} {search_type} results for '{query}', but couldn't extract readable content from any of them. The websites might be blocking automated access."
result = "\n---\n".join(chunks)
summary = f"Successfully extracted content from {successful_extractions} out of {len(results)} {search_type} results for query: '{query}'\n\n---\n\n"
print(
f"[{datetime.now().isoformat()}] Extraction complete: {successful_extractions}/{len(results)} successful for query '{query}'"
)
# Record successful request with duration
duration = time.time() - start_time
await record_request(duration)
return summary + result
except Exception as e:
# Record failed request with duration
duration = time.time() - start_time
await record_request(duration)
return f"Error occurred while searching: {str(e)}. Please try again or check your query."
# Create Gradio interface
with gr.Blocks(title="Web Search MCP Server") as demo:
gr.HTML(
"""
<div style="background-color: rgba(59, 130, 246, 0.1); border: 1px solid rgba(59, 130, 246, 0.3); border-radius: 8px; padding: 12px; margin-bottom: 16px; text-align: center;">
<p style="color: rgb(59, 130, 246); margin: 0; font-size: 14px; font-weight: 500;">
π€ Community resource β please use responsibly to keep this service available for everyone
</p>
</div>
"""
)
gr.Markdown("# π Web Search MCP Server")
with gr.Tabs():
with gr.Tab("App"):
gr.Markdown(
"""
This MCP server provides web search capabilities to LLMs. It can perform general web searches
or specifically search for fresh news articles, extracting the main content from results.
**β‘ Speed-Focused:** Optimized to complete the entire search process - from query to
fully extracted web content - in under 2 seconds. Check out the Analytics tab
to see real-time performance metrics.
**Search Types:**
- **General Search**: Diverse results from various sources (blogs, docs, articles, etc.)
- **News Search**: Fresh news articles and breaking stories from news sources
**Note:** This interface is primarily designed for MCP tool usage by LLMs, but you can
also test it manually below.
"""
)
gr.HTML(
"""
<div style="margin-bottom: 24px;">
<a href="https://huggingface.co/spaces/victor/websearch?view=api">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/use-with-mcp-lg-dark.svg"
alt="Use with MCP"
style="height: 36px;">
</a>
</div>
""",
padding=0,
)
with gr.Row():
with gr.Column(scale=3):
query_input = gr.Textbox(
label="Search Query",
placeholder='e.g. "OpenAI news", "climate change 2024", "AI developments"',
info="Required: Enter your search query",
)
with gr.Column(scale=1):
search_type_input = gr.Radio(
choices=["search", "news"],
value="search",
label="Search Type",
info="Choose search type",
)
with gr.Row():
num_results_input = gr.Slider(
minimum=1,
maximum=20,
value=4,
step=1,
label="Number of Results",
info="Optional: How many results to fetch (default: 4)",
)
search_button = gr.Button("Search", variant="primary")
output = gr.Textbox(
label="Extracted Content",
lines=25,
max_lines=50,
info="The extracted article content will appear here",
)
# Add examples
gr.Examples(
examples=[
["OpenAI GPT-5 latest developments", "news", 5],
["React hooks useState", "search", 4],
["Tesla stock price today", "news", 6],
["Apple Vision Pro reviews", "search", 4],
["best Italian restaurants NYC", "search", 4],
],
inputs=[query_input, search_type_input, num_results_input],
outputs=output,
fn=search_web,
cache_examples=False,
)
with gr.Tab("Analytics"):
gr.Markdown("## Community Usage Analytics")
gr.Markdown(
"Track daily request counts and average response times from all community users."
)
with gr.Row():
with gr.Column():
requests_plot = gr.BarPlot(
value=last_n_days_df(
14
), # Show only last 14 days for better visibility
x="date",
y="count",
title="Daily Request Count",
tooltip=["date", "count"],
height=350,
x_label_angle=-45, # Rotate labels to prevent overlap
container=False,
)
with gr.Column():
avg_time_plot = gr.BarPlot(
value=last_n_days_avg_time_df(14), # Show only last 14 days
x="date",
y="avg_time",
title="Average Request Time (seconds)",
tooltip=["date", "avg_time", "request_count"],
height=350,
x_label_angle=-45,
container=False,
)
search_button.click(
fn=search_web, # Use search_web directly instead of search_and_log
inputs=[query_input, search_type_input, num_results_input],
outputs=output,
api_name=False, # Hide this endpoint from API & MCP
)
# Load fresh analytics data when the page loads or Analytics tab is clicked
demo.load(
fn=lambda: (last_n_days_df(14), last_n_days_avg_time_df(14)),
outputs=[requests_plot, avg_time_plot],
api_name=False,
)
# Expose search_web as the only MCP tool
gr.api(search_web, api_name="search_web")
if __name__ == "__main__":
# Launch with MCP server enabled
# The MCP endpoint will be available at: http://localhost:7860/gradio_api/mcp/sse
demo.launch(mcp_server=True, show_api=True)
|