AustingDong
modify best layer for ChartGemma, removed some outputs
a907ad0
raw
history blame
17.6 kB
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
from demo.cam import generate_gradcam, AttentionGuidedCAMJanus, AttentionGuidedCAMClip, AttentionGuidedCAMChartGemma, AttentionGuidedCAMLLaVA
from demo.model_utils import Clip_Utils, Janus_Utils, LLaVA_Utils, ChartGemma_Utils, add_title_to_image
import numpy as np
import matplotlib.pyplot as plt
import gc
import spaces
from PIL import Image
def set_seed(model_seed = 42):
torch.manual_seed(model_seed)
np.random.seed(model_seed)
torch.cuda.manual_seed(model_seed) if torch.cuda.is_available() else None
set_seed()
clip_utils = Clip_Utils()
clip_utils.init_Clip()
model_utils, vl_gpt, tokenizer = None, None, None
model_name = "Clip"
language_model_max_layer = 24
language_model_best_layer = 8
def clean():
global model_utils, vl_gpt, tokenizer, clip_utils
# Move models to CPU first (prevents CUDA references)
if 'vl_gpt' in globals() and vl_gpt is not None:
vl_gpt.to("cpu")
if 'clip_utils' in globals() and clip_utils is not None:
del clip_utils
# Delete all references
del model_utils, vl_gpt, tokenizer
model_utils, vl_gpt, tokenizer, clip_utils = None, None, None, None
gc.collect()
# Empty CUDA cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect() # Frees inter-process CUDA memory
# Empty MacOS Metal backend (if using Apple Silicon)
if torch.backends.mps.is_available():
torch.mps.empty_cache()
# Multimodal Understanding function
@spaces.GPU(duration=120)
def multimodal_understanding(model_type,
saliency_map_method,
visual_pooling_method,
image, question, seed, top_p, temperature, target_token_idx,
visualization_layer_min, visualization_layer_max, focus, response_type):
# Clear CUDA cache before generating
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
# set seed
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed) if torch.cuda.is_available() else None
input_text_decoded = ""
answer = ""
if model_name == "Clip":
inputs = clip_utils.prepare_inputs([question], image)
if saliency_map_method == "GradCAM":
# Generate Grad-CAM
all_layers = [layer.layer_norm1 for layer in clip_utils.model.vision_model.encoder.layers]
if visualization_layers_min.value != visualization_layers_max.value:
target_layers = all_layers[visualization_layer_min-1 : visualization_layer_max-1]
else:
target_layers = [all_layers[visualization_layer_min-1]]
grad_cam = AttentionGuidedCAMClip(clip_utils.model, target_layers)
cam, outputs, grid_size = grad_cam.generate_cam(inputs, class_idx=0, visual_pooling_method=visual_pooling_method)
cam = cam.to("cpu")
cam = [generate_gradcam(cam, image, size=(224, 224))]
grad_cam.remove_hooks()
target_token_decoded = ""
else:
for param in vl_gpt.parameters():
param.requires_grad = True
prepare_inputs = model_utils.prepare_inputs(question, image)
if response_type == "answer + visualization":
if model_name.split('-')[0] == "Janus":
inputs_embeds = model_utils.generate_inputs_embeddings(prepare_inputs)
outputs = model_utils.generate_outputs(inputs_embeds, prepare_inputs, temperature, top_p)
else:
outputs = model_utils.generate_outputs(prepare_inputs, temperature, top_p)
sequences = outputs.sequences.cpu().tolist()
answer = tokenizer.decode(sequences[0], skip_special_tokens=True)
attention_raw = outputs.attentions
print("answer generated")
input_ids = prepare_inputs.input_ids[0].cpu().tolist()
input_ids_decoded = [tokenizer.decode([input_ids[i]]) for i in range(len(input_ids))]
if model_name.split('-')[0] == "Janus":
start = 620
elif model_name.split('-')[0] == "ChartGemma":
start = 1024
else:
start = 512
if saliency_map_method == "GradCAM":
# target_layers = vl_gpt.vision_model.vision_tower.blocks
if focus == "Visual Encoder":
all_layers = [block.norm1 for block in vl_gpt.vision_model.vision_tower.blocks]
else:
all_layers = [layer.self_attn for layer in vl_gpt.language_model.model.layers]
if visualization_layers_min.value != visualization_layers_max.value:
target_layers = all_layers[visualization_layer_min-1 : visualization_layer_max-1]
else:
target_layers = [all_layers[visualization_layer_min-1]]
if model_name.split('-')[0] == "Janus":
gradcam = AttentionGuidedCAMJanus(vl_gpt, target_layers)
elif model_name.split('-')[0] == "LLaVA":
gradcam = AttentionGuidedCAMLLaVA(vl_gpt, target_layers)
elif model_name.split('-')[0] == "ChartGemma":
gradcam = AttentionGuidedCAMChartGemma(vl_gpt, target_layers)
cam_tensors, grid_size = gradcam.generate_cam(prepare_inputs, tokenizer, temperature, top_p, target_token_idx, visual_pooling_method, focus)
gradcam.remove_hooks()
if focus == "Visual Encoder":
cam_grid = cam_tensors.reshape(grid_size, grid_size)
cam = [generate_gradcam(cam_grid, image)]
else:
if target_token_idx != -1:
input_text_decoded = input_ids_decoded[start + target_token_idx]
for i, cam_tensor in enumerate(cam_tensors):
if i == target_token_idx:
cam_grid = cam_tensor.reshape(grid_size, grid_size)
cam_i = generate_gradcam(cam_grid, image)
cam = [add_title_to_image(cam_i, input_text_decoded)]
break
else:
cam = []
for i, cam_tensor in enumerate(cam_tensors):
cam_grid = cam_tensor.reshape(grid_size, grid_size)
cam_i = generate_gradcam(cam_grid, image)
cam_i = add_title_to_image(cam_i, input_ids_decoded[start + i])
cam.append(cam_i)
return answer, cam, input_text_decoded
# Gradio interface
def model_slider_change(model_type):
global model_utils, vl_gpt, tokenizer, clip_utils, model_name, language_model_max_layer, language_model_best_layer
model_name = model_type
if model_type == "Clip":
clean()
set_seed()
clip_utils = Clip_Utils()
clip_utils.init_Clip()
res = (
gr.Dropdown(choices=["Visualization only"], value="Visualization only", label="response_type"),
gr.Slider(minimum=1, maximum=12, value=12, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=12, value=12, step=1, label="visualization layers max"),
gr.Dropdown(choices=["Visual Encoder"], value="Visual Encoder", label="focus"),
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="saliency map type")
)
return res
elif model_type.split('-')[0] == "Janus":
clean()
set_seed()
model_utils = Janus_Utils()
vl_gpt, tokenizer = model_utils.init_Janus(model_type.split('-')[-1])
language_model_max_layer = 24
language_model_best_layer = 8
res = (
gr.Dropdown(choices=["Visualization only", "answer + visualization"], value="Visualization only", label="response_type"),
gr.Slider(minimum=1, maximum=24, value=24, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=24, value=24, step=1, label="visualization layers max"),
gr.Dropdown(choices=["Visual Encoder", "Language Model"], value="Visual Encoder", label="focus"),
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="saliency map type")
)
return res
elif model_type.split('-')[0] == "LLaVA":
clean()
set_seed()
model_utils = LLaVA_Utils()
vl_gpt, tokenizer = model_utils.init_LLaVA()
language_model_max_layer = 24
language_model_best_layer = 8
res = (
gr.Dropdown(choices=["Visualization only", "answer + visualization"], value="Visualization only", label="response_type"),
gr.Slider(minimum=1, maximum=24, value=24, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=24, value=24, step=1, label="visualization layers max"),
gr.Dropdown(choices=["Language Model"], value="Language Model", label="focus"),
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="saliency map type")
)
return res
elif model_type.split('-')[0] == "ChartGemma":
clean()
set_seed()
model_utils = ChartGemma_Utils()
vl_gpt, tokenizer = model_utils.init_ChartGemma()
language_model_max_layer = 18
language_model_best_layer = 15
res = (
gr.Dropdown(choices=["Visualization only", "answer + visualization"], value="Visualization only", label="response_type"),
gr.Slider(minimum=1, maximum=18, value=15, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=18, value=15, step=1, label="visualization layers max"),
gr.Dropdown(choices=["Language Model"], value="Language Model", label="focus"),
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="saliency map type")
)
return res
def focus_change(focus):
global model_name, language_model_max_layer
if model_name == "Clip":
res = (
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="saliency map type"),
gr.Slider(minimum=1, maximum=12, value=12, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=12, value=12, step=1, label="visualization layers max")
)
return res
if focus == "Language Model":
if response_type.value == "answer + visualization":
res = (
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="saliency map type"),
gr.Slider(minimum=1, maximum=language_model_max_layer, value=language_model_best_layer, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=language_model_max_layer, value=language_model_best_layer, step=1, label="visualization layers max")
)
return res
else:
res = (
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="saliency map type"),
gr.Slider(minimum=1, maximum=language_model_max_layer, value=language_model_best_layer, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=language_model_max_layer, value=language_model_best_layer, step=1, label="visualization layers max")
)
return res
else:
res = (
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="saliency map type"),
gr.Slider(minimum=1, maximum=24, value=24, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=24, value=24, step=1, label="visualization layers max")
)
return res
with gr.Blocks() as demo:
gr.Markdown(value="# Multimodal Understanding")
with gr.Row():
with gr.Column():
image_input = gr.Image()
saliency_map_output = gr.Gallery(label="Saliency Map", height=300, columns=1)
with gr.Column():
model_selector = gr.Dropdown(choices=["Clip", "ChartGemma-2B", "Janus-1B", "Janus-7B", "LLaVA-1.5-7B"], value="Clip", label="model")
response_type = gr.Dropdown(choices=["Visualization only"], value="Visualization only", label="response_type")
focus = gr.Dropdown(choices=["Visual Encoder"], value="Visual Encoder", label="focus")
saliency_map_method = gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="saliency map type")
visual_pooling_method = gr.Dropdown(choices=["CLS", "max", "avg"], value="CLS", label="visual pooling method")
visualization_layers_min = gr.Slider(minimum=1, maximum=12, value=12, step=1, label="visualization layers min")
visualization_layers_max = gr.Slider(minimum=1, maximum=12, value=12, step=1, label="visualization layers max")
question_input = gr.Textbox(label="Question")
und_seed_input = gr.Number(label="Seed", precision=0, value=42)
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
target_token_idx = gr.Number(label="target_token_idx (-1 means all)", precision=0, value=-1)
model_selector.change(
fn=model_slider_change,
inputs=model_selector,
outputs=[
response_type,
visualization_layers_min,
visualization_layers_max,
focus,
saliency_map_method
]
)
focus.change(
fn = focus_change,
inputs = focus,
outputs=[
saliency_map_method,
visualization_layers_min,
visualization_layers_max,
]
)
# response_type.change(
# fn = response_type_change,
# inputs = response_type,
# outputs = [saliency_map_method]
# )
understanding_button = gr.Button("Chat")
understanding_output = gr.Textbox(label="Answer")
understanding_target_token_decoded_output = gr.Textbox(label="Target Token Decoded")
examples_inpainting = gr.Examples(
label="Multimodal Understanding examples",
examples=[
[
"What is the approximate global smartphone market share of Samsung?",
"images/PieChart.png"
],
[
"What is the average internet speed in Japan?",
"images/BarChart.png"
],
[
"What was the average price of coffee beans in October 2019?",
"images/AreaChart.png"
],
[
"Which city's metro system has the largest number of stations?",
"images/BubbleChart.png"
],
[
"True/False: In 2020, the unemployment rate for Washington (WA) was higher than that of Wisconsin (WI).",
"images/Choropleth_New.png"
],
[
"What distance have customers traveled in the taxi the most?",
"images/Histogram.png"
],
[
"What was the price of a barrel of oil in February 2020?",
"images/LineChart.png"
],
[
"True/False: eBay is nested in the Software category.",
"images/TreeMap.png"
],
[
"True/False: There is a negative linear relationship between the height and the weight of the 85 males.",
"images/Scatterplot.png"
],
[
"Which country has the lowest proportion of Gold medals?",
"images/Stacked100.png"
],
[
"What was the ratio of girls named 'Isla' to girls named 'Amelia' in 2012 in the UK?",
"images/StackedArea.png"
],
[
"What is the cost of peanuts in Seoul?",
"images/StackedBar.png"
],
[
"Where is the dog? Left or Right?",
"images/cat_dog.png"
]
# [
# "explain this meme",
# "images/doge.png",
# ],
# [
# "Convert the formula into latex code.",
# "images/equation.png",
# ],
],
inputs=[question_input, image_input],
)
understanding_button.click(
multimodal_understanding,
inputs=[model_selector, saliency_map_method, visual_pooling_method, image_input, question_input, und_seed_input, top_p, temperature, target_token_idx,
visualization_layers_min, visualization_layers_max, focus, response_type],
outputs=[understanding_output, saliency_map_output, understanding_target_token_decoded_output]
)
demo.launch(share=True)
# demo.queue(concurrency_count=1, max_size=10).launch(server_name="0.0.0.0", server_port=37906, root_path="/path")