File size: 17,625 Bytes
1ca9e3b b1faf64 1ca9e3b b1faf64 1ca9e3b 09b0453 1ca9e3b 09b0453 1ca9e3b b1faf64 1ca9e3b 09b0453 1ca9e3b b1faf64 1ca9e3b b1faf64 a907ad0 1ca9e3b b1faf64 1ca9e3b b1faf64 1ca9e3b 09b0453 1ca9e3b b1faf64 1ca9e3b 09b0453 1ca9e3b 035a152 1ca9e3b 035a152 1ca9e3b 09b0453 1ca9e3b b1faf64 a907ad0 b1faf64 a907ad0 b1faf64 09b0453 b1faf64 1ca9e3b b1faf64 1ca9e3b 09b0453 1ca9e3b 09b0453 b1faf64 1ca9e3b 09b0453 b1faf64 1ca9e3b 09b0453 1ca9e3b 09b0453 1ca9e3b 9321e89 1ca9e3b 09b0453 1ca9e3b 09b0453 1ca9e3b 09b0453 1ca9e3b 09b0453 1ca9e3b 09b0453 1ca9e3b 09b0453 1ca9e3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 |
import gradio as gr
import torch
from transformers import AutoConfig, AutoModelForCausalLM
from janus.models import MultiModalityCausalLM, VLChatProcessor
from janus.utils.io import load_pil_images
from demo.cam import generate_gradcam, AttentionGuidedCAMJanus, AttentionGuidedCAMClip, AttentionGuidedCAMChartGemma, AttentionGuidedCAMLLaVA
from demo.model_utils import Clip_Utils, Janus_Utils, LLaVA_Utils, ChartGemma_Utils, add_title_to_image
import numpy as np
import matplotlib.pyplot as plt
import gc
import spaces
from PIL import Image
def set_seed(model_seed = 42):
torch.manual_seed(model_seed)
np.random.seed(model_seed)
torch.cuda.manual_seed(model_seed) if torch.cuda.is_available() else None
set_seed()
clip_utils = Clip_Utils()
clip_utils.init_Clip()
model_utils, vl_gpt, tokenizer = None, None, None
model_name = "Clip"
language_model_max_layer = 24
language_model_best_layer = 8
def clean():
global model_utils, vl_gpt, tokenizer, clip_utils
# Move models to CPU first (prevents CUDA references)
if 'vl_gpt' in globals() and vl_gpt is not None:
vl_gpt.to("cpu")
if 'clip_utils' in globals() and clip_utils is not None:
del clip_utils
# Delete all references
del model_utils, vl_gpt, tokenizer
model_utils, vl_gpt, tokenizer, clip_utils = None, None, None, None
gc.collect()
# Empty CUDA cache
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect() # Frees inter-process CUDA memory
# Empty MacOS Metal backend (if using Apple Silicon)
if torch.backends.mps.is_available():
torch.mps.empty_cache()
# Multimodal Understanding function
@spaces.GPU(duration=120)
def multimodal_understanding(model_type,
activation_map_method,
visual_pooling_method,
image, question, seed, top_p, temperature, target_token_idx,
visualization_layer_min, visualization_layer_max, focus, response_type):
# Clear CUDA cache before generating
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
# set seed
torch.manual_seed(seed)
np.random.seed(seed)
torch.cuda.manual_seed(seed) if torch.cuda.is_available() else None
input_text_decoded = ""
answer = ""
if model_name == "Clip":
inputs = clip_utils.prepare_inputs([question], image)
if activation_map_method == "GradCAM":
# Generate Grad-CAM
all_layers = [layer.layer_norm1 for layer in clip_utils.model.vision_model.encoder.layers]
if visualization_layers_min.value != visualization_layers_max.value:
target_layers = all_layers[visualization_layer_min-1 : visualization_layer_max-1]
else:
target_layers = [all_layers[visualization_layer_min-1]]
grad_cam = AttentionGuidedCAMClip(clip_utils.model, target_layers)
cam, outputs, grid_size = grad_cam.generate_cam(inputs, class_idx=0, visual_pooling_method=visual_pooling_method)
cam = cam.to("cpu")
cam = [generate_gradcam(cam, image, size=(224, 224))]
grad_cam.remove_hooks()
target_token_decoded = ""
else:
for param in vl_gpt.parameters():
param.requires_grad = True
prepare_inputs = model_utils.prepare_inputs(question, image)
if response_type == "answer + visualization":
if model_name.split('-')[0] == "Janus":
inputs_embeds = model_utils.generate_inputs_embeddings(prepare_inputs)
outputs = model_utils.generate_outputs(inputs_embeds, prepare_inputs, temperature, top_p)
else:
outputs = model_utils.generate_outputs(prepare_inputs, temperature, top_p)
sequences = outputs.sequences.cpu().tolist()
answer = tokenizer.decode(sequences[0], skip_special_tokens=True)
attention_raw = outputs.attentions
print("answer generated")
input_ids = prepare_inputs.input_ids[0].cpu().tolist()
input_ids_decoded = [tokenizer.decode([input_ids[i]]) for i in range(len(input_ids))]
if model_name.split('-')[0] == "Janus":
start = 620
elif model_name.split('-')[0] == "ChartGemma":
start = 1024
else:
start = 512
if activation_map_method == "GradCAM":
# target_layers = vl_gpt.vision_model.vision_tower.blocks
if focus == "Visual Encoder":
all_layers = [block.norm1 for block in vl_gpt.vision_model.vision_tower.blocks]
else:
all_layers = [layer.self_attn for layer in vl_gpt.language_model.model.layers]
if visualization_layers_min.value != visualization_layers_max.value:
target_layers = all_layers[visualization_layer_min-1 : visualization_layer_max-1]
else:
target_layers = [all_layers[visualization_layer_min-1]]
if model_name.split('-')[0] == "Janus":
gradcam = AttentionGuidedCAMJanus(vl_gpt, target_layers)
elif model_name.split('-')[0] == "LLaVA":
gradcam = AttentionGuidedCAMLLaVA(vl_gpt, target_layers)
elif model_name.split('-')[0] == "ChartGemma":
gradcam = AttentionGuidedCAMChartGemma(vl_gpt, target_layers)
cam_tensors, grid_size = gradcam.generate_cam(prepare_inputs, tokenizer, temperature, top_p, target_token_idx, visual_pooling_method, focus)
gradcam.remove_hooks()
if focus == "Visual Encoder":
cam_grid = cam_tensors.reshape(grid_size, grid_size)
cam = [generate_gradcam(cam_grid, image)]
else:
if target_token_idx != -1:
input_text_decoded = input_ids_decoded[start + target_token_idx]
for i, cam_tensor in enumerate(cam_tensors):
if i == target_token_idx:
cam_grid = cam_tensor.reshape(grid_size, grid_size)
cam_i = generate_gradcam(cam_grid, image)
cam = [add_title_to_image(cam_i, input_text_decoded)]
break
else:
cam = []
for i, cam_tensor in enumerate(cam_tensors):
cam_grid = cam_tensor.reshape(grid_size, grid_size)
cam_i = generate_gradcam(cam_grid, image)
cam_i = add_title_to_image(cam_i, input_ids_decoded[start + i])
cam.append(cam_i)
return answer, cam, input_text_decoded
# Gradio interface
def model_slider_change(model_type):
global model_utils, vl_gpt, tokenizer, clip_utils, model_name, language_model_max_layer, language_model_best_layer
model_name = model_type
if model_type == "Clip":
clean()
set_seed()
clip_utils = Clip_Utils()
clip_utils.init_Clip()
res = (
gr.Dropdown(choices=["Visualization only"], value="Visualization only", label="response_type"),
gr.Slider(minimum=1, maximum=12, value=12, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=12, value=12, step=1, label="visualization layers max"),
gr.Dropdown(choices=["Visual Encoder"], value="Visual Encoder", label="focus"),
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="activation map type")
)
return res
elif model_type.split('-')[0] == "Janus":
clean()
set_seed()
model_utils = Janus_Utils()
vl_gpt, tokenizer = model_utils.init_Janus(model_type.split('-')[-1])
language_model_max_layer = 24
language_model_best_layer = 8
res = (
gr.Dropdown(choices=["Visualization only", "answer + visualization"], value="Visualization only", label="response_type"),
gr.Slider(minimum=1, maximum=24, value=24, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=24, value=24, step=1, label="visualization layers max"),
gr.Dropdown(choices=["Visual Encoder", "Language Model"], value="Visual Encoder", label="focus"),
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="activation map type")
)
return res
elif model_type.split('-')[0] == "LLaVA":
clean()
set_seed()
model_utils = LLaVA_Utils()
vl_gpt, tokenizer = model_utils.init_LLaVA()
language_model_max_layer = 32
language_model_best_layer = 24
res = (
gr.Dropdown(choices=["Visualization only", "answer + visualization"], value="Visualization only", label="response_type"),
gr.Slider(minimum=1, maximum=32, value=24, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=32, value=24, step=1, label="visualization layers max"),
gr.Dropdown(choices=["Language Model"], value="Language Model", label="focus"),
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="activation map type")
)
return res
elif model_type.split('-')[0] == "ChartGemma":
clean()
set_seed()
model_utils = ChartGemma_Utils()
vl_gpt, tokenizer = model_utils.init_ChartGemma()
language_model_max_layer = 18
language_model_best_layer = 15
res = (
gr.Dropdown(choices=["Visualization only", "answer + visualization"], value="Visualization only", label="response_type"),
gr.Slider(minimum=1, maximum=18, value=15, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=18, value=15, step=1, label="visualization layers max"),
gr.Dropdown(choices=["Language Model"], value="Language Model", label="focus"),
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="activation map type")
)
return res
def focus_change(focus):
global model_name, language_model_max_layer
if model_name == "Clip":
res = (
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="activation map type"),
gr.Slider(minimum=1, maximum=12, value=12, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=12, value=12, step=1, label="visualization layers max")
)
return res
if focus == "Language Model":
if response_type.value == "answer + visualization":
res = (
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="activation map type"),
gr.Slider(minimum=1, maximum=language_model_max_layer, value=language_model_best_layer, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=language_model_max_layer, value=language_model_best_layer, step=1, label="visualization layers max")
)
return res
else:
res = (
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="activation map type"),
gr.Slider(minimum=1, maximum=language_model_max_layer, value=language_model_best_layer, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=language_model_max_layer, value=language_model_best_layer, step=1, label="visualization layers max")
)
return res
else:
res = (
gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="activation map type"),
gr.Slider(minimum=1, maximum=24, value=24, step=1, label="visualization layers min"),
gr.Slider(minimum=1, maximum=24, value=24, step=1, label="visualization layers max")
)
return res
with gr.Blocks() as demo:
gr.Markdown(value="# Multimodal Understanding")
with gr.Row():
with gr.Column():
image_input = gr.Image()
activation_map_output = gr.Gallery(label="activation Map", height=300, columns=1)
with gr.Column():
model_selector = gr.Dropdown(choices=["Clip", "ChartGemma-3B", "Janus-1B", "Janus-7B", "LLaVA-v1.6-Mistral-7B"], value="Clip", label="model")
response_type = gr.Dropdown(choices=["Visualization only"], value="Visualization only", label="response_type")
focus = gr.Dropdown(choices=["Visual Encoder"], value="Visual Encoder", label="focus")
activation_map_method = gr.Dropdown(choices=["GradCAM"], value="GradCAM", label="activation map type")
visual_pooling_method = gr.Dropdown(choices=["CLS", "max", "avg"], value="CLS", label="visual pooling method")
visualization_layers_min = gr.Slider(minimum=1, maximum=12, value=12, step=1, label="visualization layers min")
visualization_layers_max = gr.Slider(minimum=1, maximum=12, value=12, step=1, label="visualization layers max")
question_input = gr.Textbox(label="Question")
und_seed_input = gr.Number(label="Seed", precision=0, value=42)
top_p = gr.Slider(minimum=0, maximum=1, value=0.95, step=0.05, label="top_p")
temperature = gr.Slider(minimum=0, maximum=1, value=0.1, step=0.05, label="temperature")
target_token_idx = gr.Number(label="target_token_idx (-1 means all)", precision=0, value=-1)
model_selector.change(
fn=model_slider_change,
inputs=model_selector,
outputs=[
response_type,
visualization_layers_min,
visualization_layers_max,
focus,
activation_map_method
]
)
focus.change(
fn = focus_change,
inputs = focus,
outputs=[
activation_map_method,
visualization_layers_min,
visualization_layers_max,
]
)
# response_type.change(
# fn = response_type_change,
# inputs = response_type,
# outputs = [activation_map_method]
# )
understanding_button = gr.Button("Chat")
understanding_output = gr.Textbox(label="Answer")
understanding_target_token_decoded_output = gr.Textbox(label="Target Token Decoded")
examples_inpainting = gr.Examples(
label="Multimodal Understanding examples",
examples=[
[
"What is the approximate global smartphone market share of Samsung?",
"images/PieChart.png"
],
[
"What is the average internet speed in Japan?",
"images/BarChart.png"
],
[
"What was the average price of coffee beans in October 2019?",
"images/AreaChart.png"
],
[
"Which city's metro system has the largest number of stations?",
"images/BubbleChart.png"
],
[
"True/False: In 2020, the unemployment rate for Washington (WA) was higher than that of Wisconsin (WI).",
"images/Choropleth_New.png"
],
[
"What distance have customers traveled in the taxi the most?",
"images/Histogram.png"
],
[
"What was the price of a barrel of oil in February 2020?",
"images/LineChart.png"
],
[
"True/False: eBay is nested in the Software category.",
"images/TreeMap.png"
],
[
"True/False: There is a negative linear relationship between the height and the weight of the 85 males.",
"images/Scatterplot.png"
],
[
"Which country has the lowest proportion of Gold medals?",
"images/Stacked100.png"
],
[
"What was the ratio of girls named 'Isla' to girls named 'Amelia' in 2012 in the UK?",
"images/StackedArea.png"
],
[
"What is the cost of peanuts in Seoul?",
"images/StackedBar.png"
],
[
"Where is the dog? Left or Right?",
"images/cat_dog.png"
]
# [
# "explain this meme",
# "images/doge.png",
# ],
# [
# "Convert the formula into latex code.",
# "images/equation.png",
# ],
],
inputs=[question_input, image_input],
)
understanding_button.click(
multimodal_understanding,
inputs=[model_selector, activation_map_method, visual_pooling_method, image_input, question_input, und_seed_input, top_p, temperature, target_token_idx,
visualization_layers_min, visualization_layers_max, focus, response_type],
outputs=[understanding_output, activation_map_output, understanding_target_token_decoded_output]
)
demo.launch(share=True)
# demo.queue(concurrency_count=1, max_size=10).launch(server_name="0.0.0.0", server_port=37906, root_path="/path") |