Spaces:
Running
Running
File size: 30,889 Bytes
a04bc03 7c01a29 a04bc03 2a89826 a04bc03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 |
import streamlit as st
import fitz # PyMuPDF
from langchain_community.embeddings import HuggingFaceEmbeddings
import chromadb
import uuid
from groq import Groq
import re
import json
import os
# -------------------- Configuration --------------------
st.set_page_config(
page_title="AI Interview Coach",
page_icon="πΌ",
layout="centered",
initial_sidebar_state="collapsed"
)
# Custom CSS with Dark Theme
st.markdown("""
<style>
.main {background-color: #121212; color: #ffffff;}
.stButton>button {background-color: #4A90E2; color: white; border-radius: 8px; padding: 0.5rem 1rem;}
.question-card {background: #1A1A1A; border-radius: 15px; padding: 2rem; margin: 1.5rem 0; border: 1px solid #333333; animation: fadeIn 0.5s ease-in;}
.welcome-card {background: #1A1A1A; border-radius: 15px; padding: 2rem; margin: 1.5rem 0; border: 1px solid #4A90E2; animation: glow 2s infinite alternate;}
.final-report {background: #1A1A1A; border-radius: 15px; padding: 2rem; margin: 1rem 0; border: 1px solid #333333;}
.feedback-card {background: #2D2D2D; border-left: 4px solid #4A90E2; border-radius: 8px; padding: 1.5rem; margin: 1rem 0;}
.resource-card {background: #2D2D2D; border-radius: 10px; padding: 1rem; margin: 1rem 0; animation: slideIn 0.5s ease-out;}
.correct-answer {color: #4CD964; border-left: 4px solid #4CD964; padding-left: 1rem; margin: 1rem 0;}
.wrong-answer {color: #FF3B30; border-left: 4px solid #FF3B30; padding-left: 1rem; margin: 1rem 0;}
.topic-chip {display: inline-block; background: #333333; padding: 5px 10px; margin: 5px; border-radius: 15px; font-size: 0.8rem;}
.stTextInput>div>div>input {background-color: #2D2D2D !important; color: #FFFFFF !important; border-radius: 8px;}
.stTextArea>div>div>textarea {background-color: #2D2D2D !important; color: #FFFFFF !important; border-radius: 8px;}
/* New Enhanced Styles */
.report-question {
background: linear-gradient(145deg, #1E1E1E 0%, #2D2D2D 100%);
border-radius: 15px;
padding: 1.5rem;
margin: 1.5rem 0;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
transition: transform 0.3s ease;
border-left: 4px solid #4A90E2;
}
.report-question:hover {
transform: translateY(-3px);
}
.question-header {
color: #4A90E2;
font-size: 1.2rem;
margin-bottom: 1rem;
padding-bottom: 0.5rem;
border-bottom: 1px solid #333333;
display: flex;
align-items: center;
gap: 10px;
}
.user-answer {
background: #333333;
padding: 1rem;
border-radius: 8px;
margin: 1rem 0;
position: relative;
}
.user-answer::before {
content: "π£οΈ Your Answer";
font-size: 0.8rem;
color: #888888;
position: absolute;
top: -10px;
left: 15px;
background: #2D2D2D;
padding: 2px 8px;
border-radius: 4px;
}
.analysis-section {
padding: 1rem;
border-radius: 8px;
margin: 1rem 0;
}
.strength-badge {
background: rgba(76, 217, 100, 0.15);
color: #4CD964;
padding: 8px 15px;
border-radius: 20px;
display: inline-flex;
align-items: center;
gap: 8px;
margin: 5px;
}
.improvement-badge {
background: rgba(255, 59, 48, 0.15);
color: #FF3B30;
padding: 8px 15px;
border-radius: 20px;
display: inline-flex;
align-items: center;
gap: 8px;
margin: 5px;
}
.topic-pill {
background: rgba(74, 144, 226, 0.15);
color: #4A90E2;
padding: 8px 20px;
border-radius: 20px;
margin: 5px;
display: inline-block;
transition: all 0.3s ease;
}
.topic-pill:hover {
transform: scale(1.05);
background: rgba(74, 144, 226, 0.25);
}
@keyframes fadeIn {
from {opacity: 0; transform: translateY(20px);}
to {opacity: 1; transform: translateY(0);}
}
@keyframes slideIn {
from {transform: translateX(-20px); opacity: 0;}
to {transform: translateX(0); opacity: 1;}
}
@keyframes glow {
0% {box-shadow: 0 0 5px rgba(74, 144, 226, 0.5);}
100% {box-shadow: 0 0 20px rgba(74, 144, 226, 0.8);}
}
</style>
""", unsafe_allow_html=True)
# -------------------- Core Functions --------------------
@st.cache_resource
def setup_embeddings():
return HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
@st.cache_resource
def setup_chromadb():
client = chromadb.PersistentClient(path="./chroma_db")
return client.get_or_create_collection(name="resumes")
def extract_text_from_resume(file):
if file.type == "application/pdf":
doc = fitz.open(stream=file.read(), filetype="pdf")
return "\n".join([page.get_text("text") for page in doc])
elif file.type == "text/plain":
return file.read().decode("utf-8")
return ""
def extract_candidate_name(resume_text):
# Simple regex to extract names (look for first capitalized words)
name_match = re.search(r"([A-Z][a-z]+\s+[A-Z][a-z]+)", resume_text[:500])
if name_match:
return name_match.group(1)
return "Candidate"
def store_resume(text, user_id):
chunks = [text[i:i+512] for i in range(0, len(text), 512)]
for i, chunk in enumerate(chunks):
embedding = embedding_model.embed_query(chunk)
collection.add(
ids=[f"{user_id}-{i}"],
embeddings=[embedding],
metadatas=[{"text": chunk}]
)
return extract_candidate_name(text)
def retrieve_resume(user_id, query):
query_embedding = embedding_model.embed_query(query)
results = collection.query(query_embeddings=[query_embedding], n_results=3)
return "\n".join([doc["text"] for doc in results["metadatas"][0]])
def generate_groq_response(prompt, agent_type, temperature=0.7):
# Different system prompts based on agent type
system_prompts = {
"zero_agent": """You are the initial interviewer. Your role is to warmly greet the candidate by name and ask general background questions to make them comfortable before transitioning to technical topics. Be conversational, friendly, and engaging. Focus on understanding their motivation, work history, and personality.""",
"technical_agent": """You are an expert technical interviewer. Analyze the candidate's resume thoroughly and ask highly relevant technical questions that demonstrate your understanding of their background. Your questions should be challenging but fair, focusing on their claimed skills and past projects. Phrase questions clearly and directly.""",
"clarification_agent": """You are a supportive interviewer who helps clarify questions when candidates need assistance. When a candidate seems confused or directly asks for clarification, explain the question in simpler terms with examples. If they give a partial answer, ask follow-up questions to help them elaborate. Your goal is to maintain conversation flow and help candidates showcase their knowledge.""",
"report_agent": """You are an interview assessment specialist. Create a detailed, constructive report of the interview without scoring or grading the candidate. Identify correct answers with green text and areas for improvement with red text. Focus on suggesting specific technical topics the candidate should study further rather than platforms or resources. Be encouraging and specific in your feedback."""
}
client = Groq(api_key=os.getenv("GROQ_API_KEY"))
response = client.chat.completions.create(
model="llama-3.3-70b-versatile",
messages=[
{"role": "system", "content": system_prompts.get(agent_type, "You are an AI interview coach.")},
{"role": "user", "content": prompt}
],
temperature=temperature,
max_tokens=800
)
return response.choices[0].message.content
# -------------------- Agent Functions --------------------
def zero_agent_greeting(resume_data, candidate_name):
prompt = f"""
Resume Data: {resume_data}
Candidate Name: {candidate_name}
Generate a brief, warm greeting for {candidate_name}. The greeting should:
1. Begin with "Hello [Candidate Name]"
2. Very briefly mention something from their resume (one skill or experience)
3. Ask ONE simple question about their most recent job or experience
4. Keep it extremely concise (2-3 short sentences maximum)
The greeting must be brief as it will be converted to voice later.
"""
return generate_groq_response(prompt, "zero_agent", temperature=0.7)
def technical_agent_question(resume_data, interview_history, question_count):
difficulty = "introductory" if question_count < 2 else "intermediate" if question_count < 4 else "advanced"
prompt = f"""
Resume Data: {resume_data}
Interview History: {interview_history}
Question Number: {question_count + 1}
Difficulty: {difficulty}
Generate a relevant technical interview question based on the candidate's resume. The question should:
1. Be specific to skills or experiences mentioned in their resume
2. Feel like it's coming from someone who has read their background
3. Be appropriately challenging based on their experience level
4. Be directly relevant to their field
5. Be clearly phrased as a question (no preambles or explanations)
"""
return generate_groq_response(prompt, "technical_agent", temperature=0.7)
def clarification_agent_response(question, candidate_response, resume_data):
# Check if the response indicates confusion or asks for clarification
needs_clarification = any(phrase in candidate_response.lower() for phrase in
["i don't understand", "can you explain", "not sure", "what do you mean",
"confused", "unclear", "can you clarify", "don't know what", "?"])
if needs_clarification:
prompt = f"""
Original Question: {question}
Candidate Response: {candidate_response}
Resume Data: {resume_data}
The candidate needs clarification. Your task is to:
1. Acknowledge their confusion
2. Explain the question in simpler terms
3. Provide a concrete example to illustrate what you're asking
4. Rephrase the question in a more approachable way
IMPORTANT: Respond in a direct, conversational manner WITHOUT any explanation of your reasoning.
"""
return generate_groq_response(prompt, "clarification_agent", temperature=0.6)
else:
# Check if the answer is incomplete and needs a follow-up
prompt = f"""
Original Question: {question}
Candidate Response: {candidate_response}
Resume Data: {resume_data}
Evaluate if this response is complete or needs a follow-up.
If the response is thorough and complete, respond with "COMPLETE".
If the response is partial or could benefit from elaboration, provide a specific follow-up question.
If the response is off-topic, provide a more specific version of the original question.
IMPORTANT: If providing a follow-up question, give ONLY the question itself without any explanation of why you're asking it.
"""
follow_up = generate_groq_response(prompt, "clarification_agent", temperature=0.6)
if "COMPLETE" in follow_up:
return None
else:
# Filter out any reasoning or explanation before the question
# This regex attempts to find the actual question
question_match = re.search(r"(?:To help|I would|Let me|Could you|What|How|Why|Can you|Tell me|Describe|Explain).*\?", follow_up)
if question_match:
return question_match.group(0)
return follow_up
def strip_markdown(text):
"""Remove markdown formatting from text"""
# Remove bold/italic markers
text = re.sub(r'\*\*(.*?)\*\*', r'\1', text)
text = re.sub(r'\*(.*?)\*', r'\1', text)
# Remove backticks
text = re.sub(r'`(.*?)`', r'\1', text)
# Remove links
text = re.sub(r'\[(.*?)\]\((.*?)\)', r'\1', text)
# Remove headers
text = re.sub(r'^#+\s+', '', text, flags=re.MULTILINE)
# Remove blockquotes
text = re.sub(r'^>\s+', '', text, flags=re.MULTILINE)
# Remove horizontal rules
text = re.sub(r'^\s*[-*_]{3,}\s*$', '', text, flags=re.MULTILINE)
# Remove list markers
text = re.sub(r'^\s*[-*+]\s+', 'β’ ', text, flags=re.MULTILINE)
text = re.sub(r'^\s*\d+\.\s+', '', text, flags=re.MULTILINE)
return text
def report_agent_feedback(interview_data, resume_data):
questions_answers = "\n\n".join([
f"Q{i+1}: {qa['question']}\nAnswer: {qa['answer']}"
for i, qa in enumerate(interview_data)
])
prompt = f"""
Resume Data: {resume_data}
Interview Transcript:
{questions_answers}
Generate a detailed, visually appealing interview report that:
1. Analyzes each answer without scoring or grading
2. Identifies correct information (prefix with "CORRECT: ")
3. Identifies areas for improvement (prefix with "IMPROVE: ")
4. Recommends 3-5 specific technical topics (not platforms) the candidate should focus on
Format guidelines:
- Use emojis to make sections more engaging (β
for correct points, π‘ for improvement areas)
- ABSOLUTELY NO MARKDOWN SYNTAX - use plain text only without asterisks, backticks, hashes, etc.
- Use simple formatting that works well in HTML
- For each question, provide concise bullet-point style feedback
- Keep language encouraging and constructive
Format the report with these sections:
- QUESTION ANALYSIS (for each question)
- KEY STRENGTHS
- FOCUS AREAS
- RECOMMENDED TOPICS
Do not include any numerical scores or grades.
"""
feedback = generate_groq_response(prompt, "report_agent", temperature=0.7)
return strip_markdown(feedback) # Apply the markdown stripper
def strict_agent_monitor(candidate_response):
prompt = f"""
Candidate Response: "{candidate_response}"
Check for these behaviors strictly but fairly:
1. Repeated gibberish or nonsensical keyboard smashing.
2. Harsh, rude, or aggressive language.
3. Profanity or clearly offensive content.
If clearly inappropriate (repeated profanity/aggression/gibberish), respond:
"INAPPROPRIATE: [reason]"
If minor awkwardness, occasional mistakes, or nervousness, respond simply:
"ACCEPTABLE"
Be forgiving, human-like, and flexibleβonly flag clear and serious issues.
Be human-like: allow up to two minor instances before marking responses as inappropriate.
Only flag as inappropriate after clear repeated offenses (3 or more times) or severe disrespect/profanity.
"""
return generate_groq_response(prompt, "technical_agent", temperature=0.1)
# -------------------- Initialize Components --------------------
embedding_model = setup_embeddings()
collection = setup_chromadb()
# -------------------- Session State --------------------
if "user_id" not in st.session_state:
st.session_state.user_id = str(uuid.uuid4())
if "interview_active" not in st.session_state:
st.session_state.interview_active = False
if "current_step" not in st.session_state:
st.session_state.current_step = 0
if "interview_phase" not in st.session_state:
st.session_state.interview_phase = "greeting" # greeting, technical, wrap_up
if "questions" not in st.session_state:
st.session_state.questions = []
if "responses" not in st.session_state:
st.session_state.responses = []
if "candidate_name" not in st.session_state:
st.session_state.candidate_name = "Candidate"
if "needs_clarification" not in st.session_state:
st.session_state.needs_clarification = False
if "clarification_response" not in st.session_state:
st.session_state.clarification_response = None
# -------------------- UI Components --------------------
def show_message(message, is_question=True):
style_class = "question-card" if is_question else "feedback-card"
st.markdown(f"""
<div class="{style_class}">
<p style="color: #FFFFFF;">{message}</p>
</div>
""", unsafe_allow_html=True)
def show_welcome(greeting):
st.markdown(f"""
<div class="welcome-card">
<h3 style="color: #4A90E2; margin-bottom: 1rem;">π Welcome to Your Interview Session</h3>
<p style="color: #FFFFFF;">{greeting}</p>
</div>
""", unsafe_allow_html=True)
# -------------------- Main Application Flow --------------------
st.title("πΌ AI-Powered Interview Coach")
st.markdown("Upload your resume for a personalized mock interview session")
# Resume Upload Section
with st.expander("π Upload Your Resume", expanded=True):
uploaded_file = st.file_uploader("Choose PDF or TXT file", type=["pdf", "txt"])
if uploaded_file and not st.session_state.interview_active:
with st.spinner("Processing your resume..."):
resume_text = extract_text_from_resume(uploaded_file)
st.session_state.candidate_name = store_resume(resume_text, st.session_state.user_id)
st.success("Resume analysis completed!")
# Interview Control
if not st.session_state.interview_active and uploaded_file:
if st.button("π Start Interview Session"):
st.session_state.interview_active = True
st.session_state.current_step = 0
st.session_state.interview_phase = "greeting"
st.session_state.questions = []
st.session_state.responses = []
st.rerun()
# Interview Session
if st.session_state.interview_active:
# Greeting Phase
if st.session_state.interview_phase == "greeting" and not st.session_state.questions:
with st.spinner("Preparing your interview..."):
resume_data = retrieve_resume(st.session_state.user_id, "background experience")
greeting = zero_agent_greeting(resume_data, st.session_state.candidate_name)
st.session_state.questions.append(greeting)
show_welcome(greeting)
# Show current message/question
if st.session_state.needs_clarification and st.session_state.clarification_response:
show_message(st.session_state.clarification_response, is_question=True)
elif st.session_state.questions and st.session_state.current_step < len(st.session_state.questions):
current_question = st.session_state.questions[st.session_state.current_step]
if st.session_state.current_step > 0 or st.session_state.interview_phase != "greeting":
show_message(current_question, is_question=True)
# Answer input
answer = st.text_area(
"Your Response:",
key=f"answer_{st.session_state.current_step}_{st.session_state.needs_clarification}",
height=150,
placeholder="Type your response here..."
)
if st.button("Submit Response"):
if answer.strip():
with st.spinner("Processing your response..."):
appropriateness_check = strict_agent_monitor(answer)
if "INAPPROPRIATE:" in appropriateness_check:
reason = appropriateness_check.split("INAPPROPRIATE:")[1].strip()
# End the interview with a popup
st.session_state.interview_active = False
st.error(f"β οΈ Interview Terminated")
st.markdown(f"""
<div style="background:#FF3B30; padding:1.5rem; border-radius:10px; color:white; text-align:center;">
<h3 style="margin:0 0 1rem 0;">Interview Terminated</h3>
<p style="margin:0;">{reason}</p>
<p style="margin:1rem 0 0 0; font-size:0.9rem;">Professional communication is essential in interview settings.
Please restart the interview and maintain appropriate professional discourse.</p>
</div>
""", unsafe_allow_html=True)
# No further processing needed
st.rerun()
current_question = st.session_state.questions[st.session_state.current_step]
# Handle clarification request if needed
if st.session_state.needs_clarification:
st.session_state.needs_clarification = False
st.session_state.responses[-1]['clarification'] = st.session_state.clarification_response
st.session_state.responses[-1]['clarification_response'] = answer
st.session_state.clarification_response = None
# Move to next question
if st.session_state.interview_phase == "greeting":
st.session_state.interview_phase = "technical"
resume_data = retrieve_resume(st.session_state.user_id, "technical skills")
new_question = technical_agent_question(resume_data, "", 0)
st.session_state.questions.append(new_question)
st.session_state.current_step += 1
elif len(st.session_state.responses) >= 6: # Limit to 5 technical questions + greeting
st.session_state.interview_active = False
else:
interview_history = "\n".join([
f"Q: {item['question']}\nA: {item['answer']}"
for item in st.session_state.responses
])
resume_data = retrieve_resume(st.session_state.user_id, "technical skills")
new_question = technical_agent_question(
resume_data,
interview_history,
len(st.session_state.responses) - 1
)
st.session_state.questions.append(new_question)
st.session_state.current_step += 1
else:
# Store the response
st.session_state.responses.append({
'question': current_question,
'answer': answer
})
# Check if clarification is needed
resume_data = retrieve_resume(st.session_state.user_id, current_question)
clarification = clarification_agent_response(
current_question,
answer,
resume_data
)
if clarification:
st.session_state.needs_clarification = True
st.session_state.clarification_response = clarification
else:
# No clarification needed, proceed to next question
if st.session_state.interview_phase == "greeting":
st.session_state.interview_phase = "technical"
resume_data = retrieve_resume(st.session_state.user_id, "technical skills")
new_question = technical_agent_question(resume_data, "", 0)
st.session_state.questions.append(new_question)
st.session_state.current_step += 1
elif len(st.session_state.responses) >= 6: # Limit to 5 technical questions + greeting
st.session_state.interview_active = False
else:
interview_history = "\n".join([
f"Q: {item['question']}\nA: {item['answer']}"
for item in st.session_state.responses
])
resume_data = retrieve_resume(st.session_state.user_id, "technical skills")
new_question = technical_agent_question(
resume_data,
interview_history,
len(st.session_state.responses) - 1
)
st.session_state.questions.append(new_question)
st.session_state.current_step += 1
st.rerun()
# Final Report
if not st.session_state.interview_active and st.session_state.responses:
st.balloons()
st.markdown("---")
st.subheader("π Interview Feedback Report")
with st.spinner("Generating comprehensive feedback..."):
resume_data = retrieve_resume(st.session_state.user_id, "complete profile")
feedback = report_agent_feedback(st.session_state.responses, resume_data)
# Process the feedback to extract correct/improve sections
processed_feedback = []
for qa_index, qa in enumerate(st.session_state.responses):
question_section = f"Q{qa_index+1}: {qa['question']}"
answer_section = f"Answer: {qa['answer']}"
# Find analysis for this question
correct_parts = re.findall(r"CORRECT:(.*?)(?=IMPROVE:|$)", feedback, re.DOTALL)
improve_parts = re.findall(r"IMPROVE:(.*?)(?=CORRECT:|$)", feedback, re.DOTALL)
correct_html = ""
if qa_index < len(correct_parts) and correct_parts[qa_index].strip():
correct_text = strip_markdown(correct_parts[qa_index].strip())
correct_html = f"""
<div class="correct-answer">
<h4 style="color: #4CD964; margin:0;">β
Strong Points</h4>
<p style="color: #CCCCCC; margin-top:0.5rem;">{correct_text}</p>
</div>
"""
improve_html = ""
if qa_index < len(improve_parts) and improve_parts[qa_index].strip():
improve_html = f"""
<div class="wrong-answer">
<h4 style="color: #FF3B30; margin:0;">π‘ Areas to Develop</h4>
<p style="color: #CCCCCC; margin-top:0.5rem;">{improve_parts[qa_index].strip()}</p>
</div>
"""
processed_feedback.append({
"question": question_section,
"answer": answer_section,
"correct_html": correct_html,
"improve_html": improve_html
})
# Extract recommended topics
topic_match = re.search(r"RECOMMENDED TOPICS:(.*?)(?=$)", feedback, re.DOTALL)
topics = []
if topic_match:
topics_text = topic_match.group(1).strip()
topics = [topic.strip() for topic in re.split(r'\d+\.\s+', topics_text) if topic.strip()]
topics = [topic for topic in topics if len(topic) > 3] # Filter out short/empty topics
with st.container():
st.markdown("""
<div class='final-report'>
<h3 style='color: #4A90E2; margin-bottom: 1.5rem;'>Interview Summary Report</h3>
""", unsafe_allow_html=True)
# Interview Overview
st.markdown("""
<div style="background:#2D2D2D; padding:1.5rem; border-radius:10px; margin:2rem 0;">
<h4 style="margin:0; color:#FFFFFF;">Interview Overview</h4>
<p style="margin:1rem 0 0 0; color:#CCCCCC;">Below is a detailed breakdown of your interview responses with constructive feedback to help you improve your technical skills.</p>
</div>
""", unsafe_allow_html=True)
# Detailed Responses
st.markdown("<h4 style='color: #FFFFFF; margin-bottom:1rem;'>Question-by-Question Analysis</h4>", unsafe_allow_html=True)
for idx, response in enumerate(processed_feedback):
with st.expander(f"Question {idx+1}", expanded=False):
st.markdown(f"""
<div style='margin-bottom: 1.5rem;'>
<p style='font-weight: 500; color: #FFFFFF; font-size: 1.1rem;'>β{response['question']}β</p>
<div style='background: #333333; padding:1rem; border-radius:8px; margin:1rem 0;'>
<p style='color: #888888; margin:0;'>Your Answer:</p>
<p style='color: #FFFFFF; margin:0.5rem 0;'>{response['answer']}</p>
</div>
{response['correct_html']}
{response['improve_html']}
</div>
""", unsafe_allow_html=True)
# Improvement Recommendations
st.markdown("<h4 style='color: #FFFFFF; margin:2rem 0 1rem 0;'>π Focus Areas for Improvement</h4>", unsafe_allow_html=True)
if topics:
st.markdown("""
<div style="background:#2D2D2D; padding:1.5rem; border-radius:10px; margin:1rem 0;">
<h4 style="margin:0; color:#FFFFFF;">Recommended Topics to Study</h4>
<p style="margin:1rem 0; color:#CCCCCC;">Based on your interview responses, we recommend focusing on these key areas:</p>
<div style="margin-top:1rem;">
""", unsafe_allow_html=True)
for topic in topics:
st.markdown(f"""
<div class="topic-chip">{topic}</div>
""", unsafe_allow_html=True)
st.markdown("""
</div>
</div>
""", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Restart button
if st.button("Start New Interview"):
st.session_state.interview_active = False
st.session_state.current_step = 0
st.session_state.interview_phase = "greeting"
st.session_state.questions = []
st.session_state.responses = []
st.session_state.needs_clarification = False
st.session_state.clarification_response = None
st.rerun()
st.markdown("---")
st.markdown("<div style='text-align: center; color: #888888; margin: 2rem 0;'>Structured practice interviews to enhance your technical communication skills</div>", unsafe_allow_html=True)
|