Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,19 @@
|
|
1 |
-
import
|
2 |
-
|
3 |
-
|
4 |
import gradio as gr
|
5 |
-
|
6 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
filename=model_file,)
|
12 |
|
|
|
13 |
|
|
|
14 |
llama = Llama(
|
15 |
model_path=model_path_file,
|
16 |
n_gpu_layers=40, # Adjust based on VRAM
|
@@ -20,15 +23,17 @@ llama = Llama(
|
|
20 |
verbose=True # Enable debug logging
|
21 |
)
|
22 |
|
23 |
-
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
# Function to generate
|
26 |
-
def
|
27 |
-
|
|
|
28 |
|
29 |
-
#response = llama(prompt, max_tokens=1024, stop=stop_tokens, echo=False, stream=True) # Enable streaming
|
30 |
-
response = llama(query, max_tokens=256, stop=["Q:", "\n"], echo=False, stream=True) # Enable streaming
|
31 |
-
|
32 |
text = ""
|
33 |
for chunk in response:
|
34 |
content = chunk["choices"][0]["text"]
|
@@ -36,15 +41,81 @@ def chat_with_ai(prompt):
|
|
36 |
text += content
|
37 |
yield text
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
# Launch the Gradio app
|
50 |
-
demo.launch(share=True)
|
|
|
1 |
+
import os
|
2 |
+
import json
|
3 |
+
import subprocess
|
4 |
import gradio as gr
|
5 |
+
from threading import Thread
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
+
from llama_cpp import Llama
|
8 |
+
from datetime import datetime
|
9 |
|
10 |
+
# Load model from Hugging Face Hub
|
11 |
+
MODEL_ID = "large-traversaal/Alif-1.0-8B-Instruct"
|
12 |
+
MODEL_FILE = "model-Q8_0.gguf"
|
|
|
13 |
|
14 |
+
model_path_file = hf_hub_download(MODEL_ID, filename=MODEL_FILE)
|
15 |
|
16 |
+
# Initialize Llama model
|
17 |
llama = Llama(
|
18 |
model_path=model_path_file,
|
19 |
n_gpu_layers=40, # Adjust based on VRAM
|
|
|
23 |
verbose=True # Enable debug logging
|
24 |
)
|
25 |
|
26 |
+
CHAT_TEMPLATE = "Alif Chat"
|
27 |
+
CONTEXT_LENGTH = 4096
|
28 |
+
COLOR = "blue"
|
29 |
+
EMOJI = "💬"
|
30 |
+
DESCRIPTION = "Urdu AI Chatbot powered by Llama.cpp"
|
31 |
|
32 |
+
# Function to generate responses
|
33 |
+
def generate_response(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
|
34 |
+
chat_prompt = f"You are an Urdu Chatbot. Write an appropriate response for the given instruction: {message} Response:"
|
35 |
+
response = llama(chat_prompt, max_tokens=max_new_tokens, stop=["Q:", "\n"], echo=False, stream=True)
|
36 |
|
|
|
|
|
|
|
37 |
text = ""
|
38 |
for chunk in response:
|
39 |
content = chunk["choices"][0]["text"]
|
|
|
41 |
text += content
|
42 |
yield text
|
43 |
|
44 |
+
# Create Gradio interface
|
45 |
+
with gr.Blocks() as demo:
|
46 |
+
chatbot = gr.Chatbot(label="Urdu Chatbot", likeable=True, render=False)
|
47 |
+
chat = gr.ChatInterface(
|
48 |
+
generate_response,
|
49 |
+
chatbot=chatbot,
|
50 |
+
title=EMOJI + " " + "Alif-1.0 Chatbot",
|
51 |
+
description=DESCRIPTION,
|
52 |
+
examples=[
|
53 |
+
["شہر کراچی کے بارے میں بتاؤ"],
|
54 |
+
["قابل تجدید توانائی کیا ہے؟"],
|
55 |
+
["پاکستان کی تاریخ کے بارے میں بتائیں۔"]
|
56 |
+
],
|
57 |
+
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
58 |
+
additional_inputs=[
|
59 |
+
gr.Textbox("", label="System prompt", render=False),
|
60 |
+
gr.Slider(0, 1, 0.6, label="Temperature", render=False),
|
61 |
+
gr.Slider(128, CONTEXT_LENGTH, 1024, label="Max new tokens", render=False),
|
62 |
+
gr.Slider(1, 80, 40, step=1, label="Top K sampling", render=False),
|
63 |
+
gr.Slider(0, 2, 1.1, label="Repetition penalty", render=False),
|
64 |
+
gr.Slider(0, 1, 0.95, label="Top P sampling", render=False),
|
65 |
+
],
|
66 |
+
theme=gr.themes.Soft(primary_hue=COLOR),
|
67 |
+
)
|
68 |
|
69 |
+
demo.queue(max_size=20).launch(share=True)
|
70 |
+
|
71 |
+
|
72 |
+
# import llama_cpp
|
73 |
+
# from llama_cpp import Llama
|
74 |
+
# # import llama_cpp.llama_tokenizer
|
75 |
+
# import gradio as gr
|
76 |
+
|
77 |
+
# from huggingface_hub import hf_hub_download
|
78 |
+
|
79 |
+
# model_name = "large-traversaal/Alif-1.0-8B-Instruct"
|
80 |
+
# model_file = "model-Q8_0.gguf"
|
81 |
+
# model_path_file = hf_hub_download(model_name,
|
82 |
+
# filename=model_file,)
|
83 |
+
|
84 |
+
|
85 |
+
# llama = Llama(
|
86 |
+
# model_path=model_path_file,
|
87 |
+
# n_gpu_layers=40, # Adjust based on VRAM
|
88 |
+
# n_threads=8, # Match CPU cores
|
89 |
+
# n_batch=512, # Optimize for better VRAM usage
|
90 |
+
# n_ctx=4096, # Context window size
|
91 |
+
# verbose=True # Enable debug logging
|
92 |
+
# )
|
93 |
+
|
94 |
+
# chat_prompt = """You are Urdu Chatbot. Write approriate response for given instruction:{inp} Response:"""
|
95 |
+
|
96 |
+
# # Function to generate text with streaming output
|
97 |
+
# def chat_with_ai(prompt):
|
98 |
+
# query = chat_prompt.format(inp=prompt)
|
99 |
+
|
100 |
+
# #response = llama(prompt, max_tokens=1024, stop=stop_tokens, echo=False, stream=True) # Enable streaming
|
101 |
+
# response = llama(query, max_tokens=256, stop=["Q:", "\n"], echo=False, stream=True) # Enable streaming
|
102 |
+
|
103 |
+
# text = ""
|
104 |
+
# for chunk in response:
|
105 |
+
# content = chunk["choices"][0]["text"]
|
106 |
+
# if content:
|
107 |
+
# text += content
|
108 |
+
# yield text
|
109 |
+
|
110 |
+
|
111 |
+
# # Gradio UI setup
|
112 |
+
# demo = gr.Interface(
|
113 |
+
# fn=chat_with_ai, # Streaming function
|
114 |
+
# inputs="text", # User input
|
115 |
+
# outputs="text", # Model response
|
116 |
+
# title="Streaming Alif-1.0-8B-Instruct Chatbot 🚀",
|
117 |
+
# description="Enter a prompt and get a streamed response."
|
118 |
+
# )
|
119 |
|
120 |
+
# # Launch the Gradio app
|
121 |
+
# demo.launch(share=True)
|