File size: 12,043 Bytes
941f600
 
e433309
cf1295f
941f600
 
 
 
 
 
 
 
 
 
 
722d4db
 
941f600
13bf54b
2fe9bc4
ca4d414
11031b4
2fe9bc4
11031b4
2fe9bc4
11031b4
5c08664
ace143c
fc96d57
941f600
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2106546
 
 
941f600
 
 
 
2106546
 
 
 
 
941f600
 
 
 
 
 
 
 
2106546
941f600
 
 
 
 
2106546
941f600
 
 
2106546
941f600
 
 
 
 
 
 
 
2fe9bc4
2106546
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fe9bc4
941f600
c554a8a
941f600
0b978f8
941f600
 
c554a8a
941f600
13bf54b
 
2106546
941f600
2fe9bc4
 
b8db91c
2fe9bc4
941f600
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import gradio as gr
import os
os.system("python -m unidic download")
from pytubefix import YouTube
import torch
from openvoice import se_extractor
from openvoice.api import ToneColorConverter
import whisper
from moviepy.editor import VideoFileClip
from pydub import AudioSegment
from df.enhance import enhance, init_df, load_audio, save_audio
import translators as ts
from melo.api import TTS
from concurrent.futures import ThreadPoolExecutor
import ffmpeg
import nltk
nltk.download('averaged_perceptron_tagger_eng')

def process_video(video_file, youtube_url, language_choice):
    if language_choice == None:
        return None, "Language not selected."
    elif video_file == None and youtube_url == "":
        return None, "Upload either a video or a valid youtube URL."        
    elif video_file != None and youtube_url != "":
        return None, "Videos contradict. Delete either the uploaded video or youtube URL."
    elif video_file == None and youtube_url != "":
        yt = YouTube(youtube_url)
        yt.streams.filter(progressive=True, file_extension='mp4').first().download(filename="original.mp4")
        video_file = "original.mp4"
    
    # Initialize paths and devices
    ckpt_converter = 'checkpoints_v2/converter'
    device = "cuda:0" if torch.cuda.is_available() else "cpu"
    output_dir = 'outputs_v2'
    os.makedirs(output_dir, exist_ok=True)

    tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device)
    tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth')

    # Process the reference video
    reference_video = VideoFileClip(video_file)
    reference_audio = os.path.join(output_dir, "reference_audio.wav")
    reference_video.audio.write_audiofile(reference_audio)
    audio = AudioSegment.from_file(reference_audio)
    resampled_audio = audio.set_frame_rate(48000)
    resampled_audio.export(reference_audio, format="wav")

    # Enhance the audio
    model, df_state, _ = init_df()
    audio, _ = load_audio(reference_audio, sr=df_state.sr())
    enhanced = enhance(model, df_state, audio)
    save_audio(reference_audio, enhanced, df_state.sr())
    reference_speaker = reference_audio  # This is the voice you want to clone

    src_path = os.path.join(output_dir, "tmp.wav")

    # Speed is adjustable
    speed = 1.0

    # Transcribe the original audio with timestamps
    sttmodel = whisper.load_model("base")
    sttresult = sttmodel.transcribe(reference_speaker, verbose=True)

    # Print the original transcription
    print(sttresult["text"])
    print(sttresult["language"])

    # Get the segments with start and end times
    segments = sttresult['segments']

    if sttresult["language"] == language_choice[0:2]:
        print("Chosen language is the same as the video's original language. Only adding subtitles.")
        segments = sttresult['segments']

        # Generate subtitles file in SRT format
        srt_path = os.path.join(output_dir, 'subtitles.srt')
        with open(srt_path, 'w', encoding='utf-8') as srt_file:
            for i, segment in enumerate(segments):
                start = segment['start']
                end = segment['end']
                text = segment['text']

                start_hours, start_minutes = divmod(int(start), 3600)
                start_minutes, start_seconds = divmod(start_minutes, 60)
                start_milliseconds = int((start * 1000) % 1000)

                end_hours, end_minutes = divmod(int(end), 3600)
                end_minutes, end_seconds = divmod(end_minutes, 60)
                end_milliseconds = int((end * 1000) % 1000)

                srt_file.write(f"{i+1}\n")
                srt_file.write(f"{start_hours:02}:{start_minutes:02}:{start_seconds:02},{start_milliseconds:03} --> "
                               f"{end_hours:02}:{end_minutes:02}:{end_seconds:02},{end_milliseconds:03}\n")
                srt_file.write(f"{text}\n\n")

        # Add subtitles to the video
        final_video_with_subs_path = os.path.join(output_dir, f'final_video_with_subs.mp4')
        try:
            (
                ffmpeg
                .input(video_file)
                .output(final_video_with_subs_path, vf=f"subtitles={srt_path}")
                .run(overwrite_output=True)
            )
        except ffmpeg.Error as e:
            print('ffmpeg error:', e)
            print(e.stderr.decode('utf-8'))

        print(f"Final video with subtitles saved to: {final_video_with_subs_path}")
        return final_video_with_subs_path, "Video language and language selection are the same, audio not changed."
    else:
        target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, vad=False)
        
        # Choose the target language for translation
        language = 'EN_NEWEST'
        match language_choice[0:2]:
            case 'en':
                language = 'EN_NEWEST'
            case 'es':
                language = 'ES'
            case 'fr':
                language = 'FR'
            case 'zh':
                language = 'ZH'
            case 'ja':
                language = 'JP'
            case 'ko':
                language = 'KR'
            case _:
                language = 'EN_NEWEST'
    
        # Translate the transcription segment by segment
        def translate_segment(segment):
            return segment["start"], segment["end"], ts.translate_text(query_text=segment["text"], translator="google", to_language=language_choice)
    
        # Batch translation to reduce memory load
        batch_size = 2
        translation_segments = []
        for i in range(0, len(segments), batch_size):
            batch = segments[i:i + batch_size]
            with ThreadPoolExecutor(max_workers=5) as executor:
                batch_translations = list(executor.map(translate_segment, batch))
            translation_segments.extend(batch_translations)
    
        # Generate the translated audio for each segment
        model = TTS(language=language, device=device)
        speaker_ids = model.hps.data.spk2id
    
        def generate_segment_audio(segment, speaker_id):
            start, end, translated_text = segment
            segment_path = os.path.join(output_dir, f'segment_{start}_{end}.wav')
            model.tts_to_file(translated_text, speaker_id, segment_path, speed=speed)
            return segment_path, start, end, translated_text
    
        for speaker_key in speaker_ids.keys():
            speaker_id = speaker_ids[speaker_key]
            speaker_key = speaker_key.lower().replace('_', '-')
    
            source_se = torch.load(f'checkpoints_v2/base_speakers/ses/{speaker_key}.pth', map_location=device)
    
            segment_files = []
            subtitle_entries = []
            for segment in translation_segments:
                segment_file, start, end, translated_text = generate_segment_audio(segment, speaker_id)
    
                # Run the tone color converter
                encode_message = "@MyShell"
                tone_color_converter.convert(
                audio_src_path=segment_file,
                src_se=source_se,
                tgt_se=target_se,
                output_path=segment_file,
                message=encode_message)
                
                segment_files.append((segment_file, start, end, translated_text))
    
            # Combine the audio segments
            combined_audio = AudioSegment.empty()
            video_segments = []
            previous_end = 0
            subtitle_counter = 1
            for segment_file, start, end, translated_text in segment_files:
                segment_audio = AudioSegment.from_file(segment_file)
                combined_audio += segment_audio
                
                # Calculate the duration of the audio segment
                audio_duration = len(segment_audio) / 1000.0
    
                # Add the subtitle entry for this segment
                subtitle_entries.append((subtitle_counter, previous_end, previous_end + audio_duration, translated_text))
                subtitle_counter += 1
    
                # Get the corresponding video segment and adjust its speed to match the audio duration
                video_segment = (
                    ffmpeg
                    .input(reference_video.filename, ss=start, to=end)
                    .filter('setpts', f'PTS / {(end - start) / audio_duration}')
                )
                video_segments.append((video_segment, ffmpeg.input(segment_file)))
                previous_end += audio_duration
    
            save_path = os.path.join(output_dir, f'output_v2_{speaker_key}.wav')
            combined_audio.export(save_path, format="wav")
    
            # Combine video and audio segments using ffmpeg
            video_and_audio_files = [item for sublist in video_segments for item in sublist]
            joined = (
                ffmpeg
                .concat(*video_and_audio_files, v=1, a=1)
                .node
            )
    
            final_video_path = os.path.join(output_dir, f'final_video_{speaker_key}.mp4')
            try:
                (
                    ffmpeg
                    .output(joined[0], joined[1], final_video_path, vcodec='libx264', acodec='aac')
                    .run(overwrite_output=True)
                )
            except ffmpeg.Error as e:
                print('ffmpeg error:', e)
                print(e.stderr.decode('utf-8'))
    
            print(f"Final video without subtitles saved to: {final_video_path}")
    
            # Generate subtitles file in SRT format
            srt_path = os.path.join(output_dir, 'subtitles.srt')
            with open(srt_path, 'w', encoding='utf-8') as srt_file:
                for entry in subtitle_entries:
                    index, start, end, text = entry
                    start_hours, start_minutes = divmod(int(start), 3600)
                    start_minutes, start_seconds = divmod(start_minutes, 60)
                    start_milliseconds = int((start * 1000) % 1000)
    
                    end_hours, end_minutes = divmod(int(end), 3600)
                    end_minutes, end_seconds = divmod(end_minutes, 60)
                    end_milliseconds = int((end * 1000) % 1000)
    
                    srt_file.write(f"{index}\n")
                    srt_file.write(f"{start_hours:02}:{start_minutes:02}:{start_seconds:02},{start_milliseconds:03} --> "
                                   f"{end_hours:02}:{end_minutes:02}:{end_seconds:02},{end_milliseconds:03}\n")
                    srt_file.write(f"{text}\n\n")
    
            # Add subtitles to the video
            final_video_with_subs_path = os.path.join(output_dir, f'final_video_with_subs_{speaker_key}.mp4')
            try:
                (
                    ffmpeg
                    .input(final_video_path)
                    .output(final_video_with_subs_path, vf=f"subtitles={srt_path}")
                    .run(overwrite_output=True)
                )
            except ffmpeg.Error as e:
                print('ffmpeg error:', e)
                print(e.stderr.decode('utf-8'))
    
            print(f"Final video with subtitles saved to: {final_video_with_subs_path}")
    
            return final_video_with_subs_path, "Video successfully translated."

#Gradio Interface
language_choices = ts.get_languages("google")["en"]
language_choices.remove("auto")

gr.Interface(
    fn=process_video,
    inputs=[
        gr.Video(label="Upload a video from your device storage", sources=['upload']),
        gr.Textbox(label="OR enter a YouTube video URL"),
        gr.Dropdown(choices=language_choices, label="Choose Language for Translation (Expressed in ISO 639-1 code)")
    ],
    outputs=[
        gr.Video(label="Translated Video", format='mp4'),
        gr.Textbox(show_label=False)
    ],
    title="Video Translation and Voice Cloning",
    description="Upload a video, choose a language to translate the audio, and download the processed video with translated audio."
).launch()