|
from collections import defaultdict |
|
import glob |
|
import os |
|
import json |
|
import numpy as np |
|
from PIL import Image |
|
import cv2 |
|
import torch |
|
import decord |
|
|
|
|
|
def scale_intrs(intrs, ratio_x, ratio_y): |
|
if len(intrs.shape) >= 3: |
|
intrs[:, 0] = intrs[:, 0] * ratio_x |
|
intrs[:, 1] = intrs[:, 1] * ratio_y |
|
else: |
|
intrs[0] = intrs[0] * ratio_x |
|
intrs[1] = intrs[1] * ratio_y |
|
return intrs |
|
|
|
def calc_new_tgt_size(cur_hw, tgt_size, multiply): |
|
ratio = tgt_size / min(cur_hw) |
|
tgt_size = int(ratio * cur_hw[0]), int(ratio * cur_hw[1]) |
|
tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply |
|
ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1] |
|
return tgt_size, ratio_y, ratio_x |
|
|
|
def calc_new_tgt_size_by_aspect(cur_hw, aspect_standard, tgt_size, multiply): |
|
assert abs(cur_hw[0] / cur_hw[1] - aspect_standard) < 0.03 |
|
tgt_size = tgt_size * aspect_standard, tgt_size |
|
tgt_size = int(tgt_size[0] / multiply) * multiply, int(tgt_size[1] / multiply) * multiply |
|
ratio_y, ratio_x = tgt_size[0] / cur_hw[0], tgt_size[1] / cur_hw[1] |
|
return tgt_size, ratio_y, ratio_x |
|
|
|
def _load_pose(pose): |
|
intrinsic = torch.eye(4) |
|
intrinsic[0, 0] = pose["focal"][0] |
|
intrinsic[1, 1] = pose["focal"][1] |
|
intrinsic[0, 2] = pose["princpt"][0] |
|
intrinsic[1, 2] = pose["princpt"][1] |
|
intrinsic = intrinsic.float() |
|
|
|
c2w = torch.eye(4) |
|
|
|
|
|
c2w = c2w.float() |
|
|
|
return c2w, intrinsic |
|
|
|
|
|
def img_center_padding(img_np, pad_ratio): |
|
|
|
ori_w, ori_h = img_np.shape[:2] |
|
|
|
w = round((1 + pad_ratio) * ori_w) |
|
h = round((1 + pad_ratio) * ori_h) |
|
|
|
if len(img_np.shape) > 2: |
|
img_pad_np = np.zeros((w, h, img_np.shape[2]), dtype=np.uint8) |
|
else: |
|
img_pad_np = np.zeros((w, h), dtype=np.uint8) |
|
offset_h, offset_w = (w - img_np.shape[0]) // 2, (h - img_np.shape[1]) // 2 |
|
img_pad_np[offset_h: offset_h + img_np.shape[0]:, offset_w: offset_w + img_np.shape[1]] = img_np |
|
|
|
return img_pad_np |
|
|
|
|
|
def resize_image_keepaspect_np(img, max_tgt_size): |
|
""" |
|
similar to ImageOps.contain(img_pil, (img_size, img_size)) # keep the same aspect ratio |
|
""" |
|
h, w = img.shape[:2] |
|
ratio = max_tgt_size / max(h, w) |
|
new_h, new_w = round(h * ratio), round(w * ratio) |
|
return cv2.resize(img, dsize=(new_w, new_h), interpolation=cv2.INTER_AREA) |
|
|
|
|
|
def center_crop_according_to_mask(img, mask, aspect_standard, enlarge_ratio): |
|
""" |
|
img: [H, W, 3] |
|
mask: [H, W] |
|
""" |
|
ys, xs = np.where(mask > 0) |
|
|
|
if len(xs) == 0 or len(ys) == 0: |
|
raise Exception("empty mask") |
|
|
|
x_min = np.min(xs) |
|
x_max = np.max(xs) |
|
y_min = np.min(ys) |
|
y_max = np.max(ys) |
|
|
|
center_x, center_y = img.shape[1]//2, img.shape[0]//2 |
|
|
|
half_w = max(abs(center_x - x_min), abs(center_x - x_max)) |
|
half_h = max(abs(center_y - y_min), abs(center_y - y_max)) |
|
half_w_raw = half_w |
|
half_h_raw = half_h |
|
aspect = half_h / half_w |
|
|
|
if aspect >= aspect_standard: |
|
half_w = round(half_h / aspect_standard) |
|
else: |
|
half_h = round(half_w * aspect_standard) |
|
|
|
if half_h > center_y: |
|
half_w = round(half_h_raw / aspect_standard) |
|
half_h = half_h_raw |
|
if half_w > center_x: |
|
half_h = round(half_w_raw * aspect_standard) |
|
half_w = half_w_raw |
|
|
|
if abs(enlarge_ratio[0] - 1) > 0.01 or abs(enlarge_ratio[1] - 1) > 0.01: |
|
enlarge_ratio_min, enlarge_ratio_max = enlarge_ratio |
|
enlarge_ratio_max_real = min(center_y / half_h, center_x / half_w) |
|
enlarge_ratio_max = min(enlarge_ratio_max_real, enlarge_ratio_max) |
|
enlarge_ratio_min = min(enlarge_ratio_max_real, enlarge_ratio_min) |
|
enlarge_ratio_cur = np.random.rand() * (enlarge_ratio_max - enlarge_ratio_min) + enlarge_ratio_min |
|
half_h, half_w = round(enlarge_ratio_cur * half_h), round(enlarge_ratio_cur * half_w) |
|
|
|
assert half_h <= center_y |
|
assert half_w <= center_x |
|
assert abs(half_h / half_w - aspect_standard) < 0.03 |
|
|
|
offset_x = center_x - half_w |
|
offset_y = center_y - half_h |
|
|
|
new_img = img[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w] |
|
new_mask = mask[offset_y: offset_y + 2*half_h, offset_x: offset_x + 2*half_w] |
|
|
|
return new_img, new_mask, offset_x, offset_y |
|
|
|
|
|
def preprocess_image(rgb_path, mask_path, intr, pad_ratio, bg_color, |
|
max_tgt_size, aspect_standard, enlarge_ratio, |
|
render_tgt_size, multiply, need_mask=True): |
|
rgb = np.array(Image.open(rgb_path)) |
|
rgb_raw = rgb.copy() |
|
if pad_ratio > 0: |
|
rgb = img_center_padding(rgb, pad_ratio) |
|
|
|
rgb = rgb / 255.0 |
|
if need_mask: |
|
if rgb.shape[2] < 4: |
|
if mask_path is not None: |
|
mask = np.array(Image.open(mask_path)) |
|
else: |
|
from rembg import remove |
|
mask = remove(rgb_raw[:, :, (2, 1, 0)])[:, :, -1] |
|
print("rmbg mask: ", mask.min(), mask.max(), mask.shape) |
|
if pad_ratio > 0: |
|
mask = img_center_padding(mask, pad_ratio) |
|
mask = mask / 255.0 |
|
else: |
|
|
|
assert rgb.shape[2] == 4 |
|
mask = rgb[:, :, 3] |
|
else: |
|
|
|
mask = np.ones_like(rgb[:, :, 0]) |
|
|
|
mask = (mask > 0.5).astype(np.float32) |
|
rgb = rgb[:, :, :3] * mask[:, :, None] + bg_color * (1 - mask[:, :, None]) |
|
|
|
|
|
rgb = resize_image_keepaspect_np(rgb, max_tgt_size) |
|
mask = resize_image_keepaspect_np(mask, max_tgt_size) |
|
|
|
|
|
rgb, mask, offset_x, offset_y = center_crop_according_to_mask(rgb, mask, aspect_standard, enlarge_ratio) |
|
if intr is not None: |
|
intr[0, 2] -= offset_x |
|
intr[1, 2] -= offset_y |
|
|
|
|
|
tgt_hw_size, ratio_y, ratio_x = calc_new_tgt_size_by_aspect(cur_hw=rgb.shape[:2], |
|
aspect_standard=aspect_standard, |
|
tgt_size=render_tgt_size, multiply=multiply) |
|
rgb = cv2.resize(rgb, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA) |
|
mask = cv2.resize(mask, dsize=(tgt_hw_size[1], tgt_hw_size[0]), interpolation=cv2.INTER_AREA) |
|
|
|
if intr is not None: |
|
intr = scale_intrs(intr, ratio_x=ratio_x, ratio_y=ratio_y) |
|
assert abs(intr[0, 2] * 2 - rgb.shape[1]) < 2.5, f"{intr[0, 2] * 2}, {rgb.shape[1]}" |
|
assert abs(intr[1, 2] * 2 - rgb.shape[0]) < 2.5, f"{intr[1, 2] * 2}, {rgb.shape[0]}" |
|
intr[0, 2] = rgb.shape[1] // 2 |
|
intr[1, 2] = rgb.shape[0] // 2 |
|
|
|
rgb = torch.from_numpy(rgb).float().permute(2, 0, 1).unsqueeze(0) |
|
mask = torch.from_numpy(mask[:, :, None]).float().permute(2, 0, 1).unsqueeze(0) |
|
return rgb, mask, intr |
|
|
|
|
|
def extract_imgs_from_video(video_file, save_root, fps): |
|
print(f"extract_imgs_from_video:{video_file}") |
|
vr = decord.VideoReader(video_file) |
|
for i in range(0, len(vr), fps): |
|
frame = vr[i].asnumpy() |
|
save_path = os.path.join(save_root, f"{i:05d}.jpg") |
|
cv2.imwrite(save_path, frame[:, :, (2, 1, 0)]) |
|
|
|
def predict_motion_seqs_from_images(image_folder:str, save_root, fps=6): |
|
id_name = os.path.splitext(os.path.basename(image_folder))[0] |
|
if os.path.isfile(image_folder) and (image_folder.endswith("mp4") or image_folder.endswith("move")): |
|
save_frame_root = os.path.join(save_root, "extracted_frames", id_name) |
|
if not os.path.exists(save_frame_root): |
|
os.makedirs(save_frame_root, exist_ok=True) |
|
extract_imgs_from_video(video_file=image_folder, save_root=save_frame_root, fps=fps) |
|
else: |
|
print("skip extract_imgs_from_video......") |
|
image_folder = save_frame_root |
|
|
|
image_folder_abspath = os.path.abspath(image_folder) |
|
print(f"predict motion seq:{image_folder_abspath}") |
|
save_flame_root = image_folder + "_flame_params_mhmr" |
|
if not os.path.exists(save_flame_root): |
|
cmd = f"cd thirdparty/multi-hmr && python infer_batch.py --data_root {image_folder_abspath} --out_folder {image_folder_abspath} --crop_head --crop_hand --pad_ratio 0.2 --smplify" |
|
os.system(cmd) |
|
else: |
|
print("skip predict flame.........") |
|
return save_flame_root, image_folder |
|
|
|
|
|
def prepare_motion_seqs(motion_seqs_dir, image_folder, save_root, fps, |
|
bg_color, aspect_standard, enlarge_ratio, |
|
render_image_res, need_mask, multiply=16, |
|
vis_motion=False): |
|
if motion_seqs_dir is None: |
|
assert image_folder is not None |
|
motion_seqs_dir, image_folder = predict_motion_seqs_from_images(image_folder, save_root, fps) |
|
|
|
motion_seqs = sorted(glob.glob(os.path.join(motion_seqs_dir, "*.json"))) |
|
|
|
|
|
c2ws, intrs, rgbs, bg_colors, masks = [], [], [], [], [] |
|
flame_params = [] |
|
shape_param = None |
|
|
|
for idx, flame_path in enumerate(motion_seqs): |
|
if image_folder is not None: |
|
file_name = os.path.splitext(os.path.basename(flame_path))[0] |
|
frame_path = os.path.join(image_folder, file_name + ".png") |
|
if not os.path.exists(frame_path): |
|
frame_path = os.path.join(image_folder, file_name + ".jpg") |
|
|
|
with open(flame_path) as f: |
|
flame_raw_data = json.load(f) |
|
flame_param = {k: torch.FloatTensor(v) for k, v in flame_raw_data.items() if "pad_ratio" not in k} |
|
|
|
if idx == 0: |
|
shape_param = flame_param["betas"] |
|
|
|
c2w, intrinsic = _load_pose(flame_param) |
|
intrinsic_raw = intrinsic.clone() |
|
if image_folder is not None: |
|
rgb, mask, intrinsic = preprocess_image(frame_path, mask_path=None, |
|
need_mask=need_mask, |
|
bg_color=bg_color, |
|
pad_ratio=float(flame_raw_data["pad_ratio"]), |
|
max_tgt_size=int(flame_param["img_size_wh"][0]), |
|
aspect_standard=aspect_standard, |
|
enlarge_ratio=enlarge_ratio, |
|
render_tgt_size=render_image_res, |
|
multiply=multiply, |
|
intr=intrinsic) |
|
rgbs.append(rgb) |
|
masks.append(mask) |
|
|
|
c2ws.append(c2w) |
|
bg_colors.append(bg_color) |
|
intrs.append(intrinsic) |
|
|
|
flame_params.append(flame_param) |
|
|
|
c2ws = torch.stack(c2ws, dim=0) |
|
intrs = torch.stack(intrs, dim=0) |
|
bg_colors = torch.tensor(bg_colors, dtype=torch.float32).unsqueeze(-1).repeat(1, 3) |
|
|
|
if len(rgbs) > 0: |
|
rgbs = torch.cat(rgbs, dim=0) |
|
|
|
|
|
flame_params_tmp = defaultdict(list) |
|
for flame in flame_params: |
|
for k, v in flame.items(): |
|
flame_params_tmp[k].append(v) |
|
for k, v in flame_params_tmp.items(): |
|
flame_params_tmp[k] = torch.stack(v) |
|
flame_params = flame_params_tmp |
|
|
|
flame_params["betas"] = shape_param |
|
|
|
if vis_motion: |
|
motion_render = render_flame_mesh(flame_params, intrs) |
|
else: |
|
motion_render = None |
|
|
|
|
|
for k, v in flame_params.items(): |
|
flame_params[k] = v.unsqueeze(0) |
|
|
|
c2ws = c2ws.unsqueeze(0) |
|
intrs = intrs.unsqueeze(0) |
|
bg_colors = bg_colors.unsqueeze(0) |
|
if len(rgbs) > 0: |
|
rgbs = rgbs.unsqueeze(0) |
|
|
|
|
|
motion_seqs = {} |
|
motion_seqs["render_c2ws"] = c2ws |
|
motion_seqs["render_intrs"] = intrs |
|
motion_seqs["render_bg_colors"] = bg_colors |
|
motion_seqs["flame_params"] = flame_params |
|
motion_seqs["rgbs"] = rgbs |
|
motion_seqs["vis_motion_render"] = motion_render |
|
|
|
return motion_seqs |