|
import torch
|
|
from torch.autograd import Variable
|
|
import matplotlib.pyplot as plt
|
|
import seaborn as sns
|
|
|
|
|
|
def get_channel_sum(input):
|
|
"""
|
|
Generates the sum of each channel of the input
|
|
input = batch_size x 68 x 64 x 64
|
|
output = batch_size x 68
|
|
"""
|
|
temp = torch.sum(input, dim=3)
|
|
output = torch.sum(temp, dim=2)
|
|
|
|
return output
|
|
|
|
|
|
def expand_two_dimensions_at_end(input, dim1, dim2):
|
|
"""
|
|
Adds two more dimensions to the end of the input
|
|
input = batch_size x 68
|
|
output= batch_size x 68 x dim1 x dim2
|
|
"""
|
|
input = input.unsqueeze(-1).unsqueeze(-1)
|
|
input = input.expand(-1, -1, dim1, dim2)
|
|
|
|
return input
|
|
|
|
|
|
class Distribution(object):
|
|
def __init__(self, heatmaps, num_dim_dist=2, EPSILON=1e-5, is_normalize=True):
|
|
self.heatmaps = heatmaps
|
|
self.num_dim_dist = num_dim_dist
|
|
self.EPSILON = EPSILON
|
|
self.is_normalize = is_normalize
|
|
batch, npoints, h, w = heatmaps.shape
|
|
|
|
heatmap_sum = torch.clamp(heatmaps.sum([2, 3]), min=1e-6)
|
|
self.heatmaps = heatmaps / heatmap_sum.view(batch, npoints, 1, 1)
|
|
|
|
|
|
self.mean = self.get_spatial_mean(self.heatmaps)
|
|
|
|
self.covars = self.get_covariance_matrix(self.heatmaps, self.mean)
|
|
|
|
_covars = self.covars.view(batch * npoints, 2, 2).cpu()
|
|
evalues, evectors = _covars.symeig(eigenvectors=True)
|
|
|
|
self.evalues = evalues.view(batch, npoints, 2).to(heatmaps)
|
|
|
|
self.evectors = evectors.view(batch, npoints, 2, 2).to(heatmaps)
|
|
|
|
def __repr__(self):
|
|
return "Distribution()"
|
|
|
|
def plot(self, heatmap, mean, evalues, evectors):
|
|
|
|
plt.figure(0)
|
|
if heatmap.is_cuda:
|
|
heatmap, mean = heatmap.cpu(), mean.cpu()
|
|
evalues, evectors = evalues.cpu(), evectors.cpu()
|
|
sns.heatmap(heatmap, cmap="RdBu_r")
|
|
for evalue, evector in zip(evalues, evectors):
|
|
plt.arrow(mean[0], mean[1], evalue * evector[0], evalue * evector[1],
|
|
width=0.2, shape="full")
|
|
plt.show()
|
|
|
|
def easy_plot(self, index):
|
|
|
|
num_bs, num_p = index
|
|
heatmap = self.heatmaps[num_bs, num_p]
|
|
mean = self.mean[num_bs, num_p]
|
|
evalues = self.evalues[num_bs, num_p]
|
|
evectors = self.evectors[num_bs, num_p]
|
|
self.plot(heatmap, mean, evalues, evectors)
|
|
|
|
def project_and_scale(self, pts, eigenvalues, eigenvectors):
|
|
batch_size, npoints, _ = pts.shape
|
|
proj_pts = torch.matmul(pts.view(batch_size, npoints, 1, 2), eigenvectors)
|
|
scale_proj_pts = proj_pts.view(batch_size, npoints, 2) / torch.sqrt(eigenvalues)
|
|
return scale_proj_pts
|
|
|
|
def _make_grid(self, h, w):
|
|
if self.is_normalize:
|
|
yy, xx = torch.meshgrid(
|
|
torch.arange(h).float() / (h - 1) * 2 - 1,
|
|
torch.arange(w).float() / (w - 1) * 2 - 1)
|
|
else:
|
|
yy, xx = torch.meshgrid(
|
|
torch.arange(h).float(),
|
|
torch.arange(w).float()
|
|
)
|
|
|
|
return yy, xx
|
|
|
|
def get_spatial_mean(self, heatmap):
|
|
batch, npoints, h, w = heatmap.shape
|
|
|
|
yy, xx = self._make_grid(h, w)
|
|
yy = yy.view(1, 1, h, w).to(heatmap)
|
|
xx = xx.view(1, 1, h, w).to(heatmap)
|
|
|
|
yy_coord = (yy * heatmap).sum([2, 3])
|
|
xx_coord = (xx * heatmap).sum([2, 3])
|
|
coords = torch.stack([xx_coord, yy_coord], dim=-1)
|
|
return coords
|
|
|
|
def get_covariance_matrix(self, htp, means):
|
|
"""
|
|
Covariance calculation from the normalized heatmaps
|
|
Reference https://en.wikipedia.org/wiki/Weighted_arithmetic_mean#Weighted_sample_covariance
|
|
The unbiased estimate is given by
|
|
Unbiased covariance =
|
|
___
|
|
\
|
|
/__ w_i (x_i - \mu_i)^T (x_i - \mu_i)
|
|
|
|
___________________________________________
|
|
|
|
V_1 - (V_2/V_1)
|
|
|
|
___ ___
|
|
\ \
|
|
where V_1 = /__ w_i and V_2 = /__ w_i^2
|
|
|
|
|
|
Input:
|
|
htp = batch_size x 68 x 64 x 64
|
|
means = batch_size x 68 x 2
|
|
|
|
Output:
|
|
covariance = batch_size x 68 x 2 x 2
|
|
"""
|
|
batch_size = htp.shape[0]
|
|
num_points = htp.shape[1]
|
|
height = htp.shape[2]
|
|
width = htp.shape[3]
|
|
|
|
yv, xv = self._make_grid(height, width)
|
|
xv = Variable(xv)
|
|
yv = Variable(yv)
|
|
|
|
if htp.is_cuda:
|
|
xv = xv.cuda()
|
|
yv = yv.cuda()
|
|
|
|
xmean = means[:, :, 0]
|
|
xv_minus_mean = xv.expand(batch_size, num_points, -1, -1) - expand_two_dimensions_at_end(xmean, height,
|
|
width)
|
|
ymean = means[:, :, 1]
|
|
yv_minus_mean = yv.expand(batch_size, num_points, -1, -1) - expand_two_dimensions_at_end(ymean, height,
|
|
width)
|
|
|
|
|
|
wt_xv_minus_mean = xv_minus_mean
|
|
wt_yv_minus_mean = yv_minus_mean
|
|
|
|
wt_xv_minus_mean = wt_xv_minus_mean.view(batch_size * num_points, height * width)
|
|
wt_xv_minus_mean = wt_xv_minus_mean.view(batch_size * num_points, 1,
|
|
height * width)
|
|
wt_yv_minus_mean = wt_yv_minus_mean.view(batch_size * num_points, height * width)
|
|
wt_yv_minus_mean = wt_yv_minus_mean.view(batch_size * num_points, 1,
|
|
height * width)
|
|
vec_concat = torch.cat((wt_xv_minus_mean, wt_yv_minus_mean), 1)
|
|
|
|
htp_vec = htp.view(batch_size * num_points, 1, height * width)
|
|
htp_vec = htp_vec.expand(-1, 2, -1)
|
|
|
|
|
|
|
|
|
|
covariance = torch.bmm(htp_vec * vec_concat, vec_concat.transpose(1, 2))
|
|
covariance = covariance.view(batch_size, num_points, self.num_dim_dist,
|
|
self.num_dim_dist)
|
|
|
|
V_1 = get_channel_sum(htp) + self.EPSILON
|
|
V_2 = get_channel_sum(torch.pow(htp, 2))
|
|
denominator = V_1 - (V_2 / V_1)
|
|
|
|
covariance = covariance / expand_two_dimensions_at_end(denominator, self.num_dim_dist, self.num_dim_dist)
|
|
|
|
return (covariance)
|
|
|