Spaces:
Sleeping
Sleeping
File size: 2,246 Bytes
a46269a 411adbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
from sentence_transformers import CrossEncoder
"""
Retrieves unique full documents based on the top-ranked document IDs.
Args:
top_documents (list): List of dictionaries containing 'doc_id'.
df (pd.DataFrame): The dataset containing document IDs and text.
Returns:
pd.DataFrame: A DataFrame with 'doc_id' and 'document'.
"""
def retrieve_full_documents(top_documents, df):
# Extract unique doc_ids
unique_doc_ids = list(set(doc["doc_id"] for doc in top_documents))
# Print for debugging
print(f"Extracted Doc IDs: {unique_doc_ids}")
# Filter DataFrame where 'id' matches any of the unique_doc_ids
filtered_df = df[df["id"].isin(unique_doc_ids)][["id", "documents"]].drop_duplicates(subset="id")
# Rename columns for clarity
filtered_df = filtered_df.rename(columns={"id": "doc_id", "documents": "document"})
return filtered_df
"""
Reranks the retrieved documents based on their relevance to the query using a Cross-Encoder model.
Args:
query (str): The search query.
retrieved_docs (pd.DataFrame): DataFrame with 'doc_id' and 'document'.
model_name (str): Name of the Cross-Encoder model.
Returns:
pd.DataFrame: A sorted DataFrame with doc_id, document, and reranking score.
"""
def rerank_documents(query, retrieved_docs_df, model_name="cross-encoder/ms-marco-MiniLM-L-6-v2"):
# Load Cross-Encoder model
model = CrossEncoder(model_name)
# Prepare query-document pairs
query_doc_pairs = [(query, " ".join(doc)) for doc in retrieved_docs_df["document"]]
# Compute relevance scores
scores = model.predict(query_doc_pairs)
# Add scores to the DataFrame
retrieved_docs_df["relevance_score"] = scores
# Sort by score in descending order (higher score = more relevant)
reranked_docs_df = retrieved_docs_df.sort_values(by="relevance_score", ascending=False).reset_index(drop=True)
return reranked_docs_df
def FineTuneAndRerankSearchResults(top_10_chunk_results, rag_extarcted_data, question, reranking_model):
unique_docs= retrieve_full_documents(top_10_chunk_results, rag_extarcted_data)
reranked_results = rerank_documents(question, unique_docs, reranking_model)
return reranked_results |