import gradio as gr import pandas as pd from map_generator import * from flight_distance import * from optimize import * from weather import * airport_df = pd.read_csv(r'airport.csv') aircraft_df = pd.read_csv(r'aircraft.csv') airport_options = [f"{row['IATA']} - {row['Airport_Name']} - {row['Country']}" for _, row in airport_df.iterrows()] airports_dict = {row['IATA']: row['Airport_Name'] for _, row in airport_df.iterrows()} # For map display # Ensure the correct column is used for aircraft types aircraft_type_column = 'Aircraft' aircraft_options = aircraft_df[aircraft_type_column].tolist() def check_route(airport_selections, aircraft_type): airports = [selection.split(" - ")[0] for selection in airport_selections] lat_long_dict = get_airport_lat_long(airports) trip_distance = calculate_distances(airports) raw_weather = fetch_weather_for_all_routes(airports, lat_long_dict) route_factors = extract_route_factors(raw_weather) for (a, b), dist in list(trip_distance.items()): trip_distance[(b, a)] = dist optimal_route, optimal_distance = find_optimal_route(airports, trip_distance, route_factors) aircraft_specs = get_aircraft_details(aircraft_type) if isinstance(aircraft_specs, str): return {"Error": aircraft_specs}, "" feasibility_result = check_route_feasibility(optimal_route, trip_distance, aircraft_specs) map_html = create_route_map(airports_dict, lat_long_dict, optimal_route, feasibility_result["Refuel Sectors"]) if feasibility_result["Can Fly Entire Route"]: result = { "Optimal Route": " -> ".join(optimal_route) + f" -> {optimal_route[0]}", "Total Round Trip Distance": f"{optimal_distance} km", "Total Fuel Required": feasibility_result["Total Fuel Required (kg)"], "Total Flight Time": feasibility_result["Total Flight Time (hrs)"], "Can Fly Entire Route": "Yes", "Sector Details": feasibility_result["Sector Details"] } else: result = { "Optimal Route": " -> ".join(optimal_route) + f" -> {optimal_route[0]}", "Total Round Trip Distance": f"{optimal_distance} km", "Can Fly Entire Route": "No, refueling required in one or more sectors.", "Sector Details": feasibility_result["Sector Details"] } return result, map_html # Gradio Interface with gr.Blocks(theme=gr.themes.Default()) as demo: gr.Markdown("## Airport Route Feasibility Checker") # Place components in two columns for results and map with gr.Row(): with gr.Column(): airport_selector = gr.Dropdown(airport_options, multiselect=True, label="Select Airports (IATA - Name)") aircraft_selector = gr.Dropdown(aircraft_options, label="Select Aircraft Type") check_button = gr.Button("Check Route Feasibility") result_output = gr.JSON(label="Feasibility Result (Route, Fuel, Refueling Info)") with gr.Column(): gr.Markdown("## Route Map") map_output = gr.HTML(label="Interactive Route Map with Refueling Sectors") # Connect the button click to the check_route function check_button.click( fn=check_route, inputs=[airport_selector, aircraft_selector], outputs=[result_output, map_output] ) gr.Markdown("**Note:** The actual flight time and performance may vary since the dataset used is very rudimentary. In the real world, the same aircraft can have different internal configurations, leading to variations in flight time and fuel consumption.") # Launch the Gradio app demo.launch()