Spaces:
Sleeping
Sleeping
Commit
·
34b54e8
1
Parent(s):
46b910e
pyarrow for faster Parquet operations
Browse files- Dataset_prep/parquet_conversion.py +18 -0
- airport.parquet +0 -0
- app.py +3 -4
- flight_distance.py +9 -1
Dataset_prep/parquet_conversion.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
# Use 'pyarrow' or 'fastparquet' for faster Parquet operations
|
4 |
+
parquet_engine = 'pyarrow' # or 'fastparquet'
|
5 |
+
|
6 |
+
# Specify data types for columns if known
|
7 |
+
dtype = {
|
8 |
+
'column1': 'int64',
|
9 |
+
'column2': 'float64',
|
10 |
+
'column3': 'object',
|
11 |
+
# Add other columns as needed
|
12 |
+
}
|
13 |
+
|
14 |
+
# Load CSV data with specified data types
|
15 |
+
df = pd.read_csv('airport.csv', dtype=dtype)
|
16 |
+
|
17 |
+
# Save as Parquet using the specified engine
|
18 |
+
df.to_parquet('airport.parquet', engine=parquet_engine)
|
airport.parquet
ADDED
Binary file (363 kB). View file
|
|
app.py
CHANGED
@@ -4,9 +4,8 @@ from map_generator import *
|
|
4 |
from flight_distance import *
|
5 |
from optimize import *
|
6 |
from weather import *
|
7 |
-
|
8 |
-
|
9 |
-
airport_df = pd.read_csv(r'airport.csv') # Adjust the path to your CSV file
|
10 |
aircraft_df = pd.read_csv(r'aircraft.csv') # Adjust the path to your CSV file
|
11 |
|
12 |
airport_options = [f"{row['IATA']} - {row['Airport_Name']}" for _, row in airport_df.iterrows()]
|
@@ -117,7 +116,7 @@ def check_route(airport_selections, aircraft_type):
|
|
117 |
return result, map_html
|
118 |
|
119 |
# Gradio Interface
|
120 |
-
with gr.Blocks(theme=
|
121 |
gr.Markdown("## Airport Route Feasibility Checker")
|
122 |
|
123 |
# Place components in two columns for results and map
|
|
|
4 |
from flight_distance import *
|
5 |
from optimize import *
|
6 |
from weather import *
|
7 |
+
# Load airport data and aircraft data from Parquet and CSV files
|
8 |
+
airport_df = pd.read_parquet(r'airport.parquet') # Adjust the path to your Parquet file
|
|
|
9 |
aircraft_df = pd.read_csv(r'aircraft.csv') # Adjust the path to your CSV file
|
10 |
|
11 |
airport_options = [f"{row['IATA']} - {row['Airport_Name']}" for _, row in airport_df.iterrows()]
|
|
|
116 |
return result, map_html
|
117 |
|
118 |
# Gradio Interface
|
119 |
+
with gr.Blocks(theme=gr.themes.Default()) as demo:
|
120 |
gr.Markdown("## Airport Route Feasibility Checker")
|
121 |
|
122 |
# Place components in two columns for results and map
|
flight_distance.py
CHANGED
@@ -24,7 +24,15 @@ def get_airport_lat_long(identifiers):
|
|
24 |
Get latitude and longitude for a list of airport identifiers (IATA codes).
|
25 |
"""
|
26 |
csv_file = 'airport.csv'
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
df_filtered = df[df['Airport_Name'].isin(identifiers) | df['IATA'].isin(identifiers)]
|
29 |
lat_long_dict = {row['IATA']: (row['Lat'], row['Long']) for _, row in df_filtered.iterrows()}
|
30 |
return lat_long_dict
|
|
|
24 |
Get latitude and longitude for a list of airport identifiers (IATA codes).
|
25 |
"""
|
26 |
csv_file = 'airport.csv'
|
27 |
+
parquet_file = 'airport.parquet'
|
28 |
+
|
29 |
+
# Try reading the parquet file first
|
30 |
+
try:
|
31 |
+
df = pd.read_parquet(parquet_file)
|
32 |
+
except FileNotFoundError:
|
33 |
+
# If parquet file is not found, fall back to reading the CSV file
|
34 |
+
df = pd.read_csv(csv_file)
|
35 |
+
|
36 |
df_filtered = df[df['Airport_Name'].isin(identifiers) | df['IATA'].isin(identifiers)]
|
37 |
lat_long_dict = {row['IATA']: (row['Lat'], row['Long']) for _, row in df_filtered.iterrows()}
|
38 |
return lat_long_dict
|