Spaces:
Sleeping
Sleeping
import gradio as gr | |
import pandas as pd | |
from map_generator import * | |
from flight_distance import * | |
from optimize import * | |
from weather import * | |
# Load airport data and aircraft data from Parquet and CSV files | |
airport_df = pd.read_parquet(r'airport.parquet') # Adjust the path to your Parquet file | |
aircraft_df = pd.read_csv(r'aircraft.csv') # Adjust the path to your CSV file | |
airport_options = [f"{row['IATA']} - {row['Airport_Name']}" for _, row in airport_df.iterrows()] | |
airports_dict = {row['IATA']: row['Airport_Name'] for _, row in airport_df.iterrows()} # For map display | |
# Ensure the correct column is used for aircraft types | |
aircraft_type_column = 'Aircraft' | |
aircraft_options = aircraft_df[aircraft_type_column].tolist() | |
def check_route(airport_selections, aircraft_type): | |
airports = [selection.split(" - ")[0] for selection in airport_selections] | |
lat_long_dict = get_airport_lat_long(airports) | |
trip_distance = calculate_distances(airports) | |
raw_weather = fetch_weather_for_all_routes(airports, lat_long_dict) | |
route_factors = extract_route_factors(raw_weather) | |
for (a, b), dist in list(trip_distance.items()): | |
trip_distance[(b, a)] = dist | |
optimal_route, optimal_distance = find_optimal_route(airports, trip_distance, route_factors) | |
aircraft_specs = get_aircraft_details(aircraft_type) | |
if isinstance(aircraft_specs, str): | |
return {"Error": aircraft_specs}, "" | |
feasibility_result = check_route_feasibility(optimal_route, trip_distance, aircraft_specs) | |
map_html = create_route_map(airports_dict, lat_long_dict, optimal_route, feasibility_result["Refuel Sectors"]) | |
if feasibility_result["Can Fly Entire Route"]: | |
result = { | |
"Optimal Route": " -> ".join(optimal_route) + f" -> {optimal_route[0]}", | |
"Total Round Trip Distance": f"{optimal_distance} km", | |
"Total Fuel Required": feasibility_result["Total Fuel Required (kg)"], | |
"Total Flight Time": feasibility_result["Total Flight Time (hrs)"], | |
"Can Fly Entire Route": "Yes", | |
"Sector Details": feasibility_result["Sector Details"] | |
} | |
else: | |
result = { | |
"Optimal Route": " -> ".join(optimal_route) + f" -> {optimal_route[0]}", | |
"Total Round Trip Distance": f"{optimal_distance} km", | |
"Can Fly Entire Route": "No, refueling required in one or more sectors.", | |
"Sector Details": feasibility_result["Sector Details"] | |
} | |
return result, map_html | |
# Gradio Interface | |
with gr.Blocks(theme=gr.themes.Default()) as demo: | |
gr.Markdown("## Airport Route Feasibility Checker") | |
# Place components in two columns for results and map | |
with gr.Row(): | |
with gr.Column(): | |
airport_selector = gr.Dropdown(airport_options, multiselect=True, label="Select Airports (IATA - Name)") | |
aircraft_selector = gr.Dropdown(aircraft_options, label="Select Aircraft Type") | |
check_button = gr.Button("Check Route Feasibility") | |
result_output = gr.JSON(label="Feasibility Result (Route, Fuel, Refueling Info)") | |
with gr.Column(): | |
gr.Markdown("## Route Map") | |
map_output = gr.HTML(label="Interactive Route Map with Refueling Sectors") | |
# Connect the button click to the check_route function | |
check_button.click( | |
fn=check_route, | |
inputs=[airport_selector, aircraft_selector], | |
outputs=[result_output, map_output] | |
) | |
# Launch the Gradio app | |
demo.launch() |