souvik0306's picture
Refactor flight route UI and main script
a9de22e
raw
history blame
3.55 kB
import gradio as gr
import pandas as pd
from map_generator import *
from flight_distance import *
from optimize import *
from weather import *
# Load airport data and aircraft data from Parquet and CSV files
airport_df = pd.read_parquet(r'airport.parquet') # Adjust the path to your Parquet file
aircraft_df = pd.read_csv(r'aircraft.csv') # Adjust the path to your CSV file
airport_options = [f"{row['IATA']} - {row['Airport_Name']}" for _, row in airport_df.iterrows()]
airports_dict = {row['IATA']: row['Airport_Name'] for _, row in airport_df.iterrows()} # For map display
# Ensure the correct column is used for aircraft types
aircraft_type_column = 'Aircraft'
aircraft_options = aircraft_df[aircraft_type_column].tolist()
def check_route(airport_selections, aircraft_type):
airports = [selection.split(" - ")[0] for selection in airport_selections]
lat_long_dict = get_airport_lat_long(airports)
trip_distance = calculate_distances(airports)
raw_weather = fetch_weather_for_all_routes(airports, lat_long_dict)
route_factors = extract_route_factors(raw_weather)
for (a, b), dist in list(trip_distance.items()):
trip_distance[(b, a)] = dist
optimal_route, optimal_distance = find_optimal_route(airports, trip_distance, route_factors)
aircraft_specs = get_aircraft_details(aircraft_type)
if isinstance(aircraft_specs, str):
return {"Error": aircraft_specs}, ""
feasibility_result = check_route_feasibility(optimal_route, trip_distance, aircraft_specs)
map_html = create_route_map(airports_dict, lat_long_dict, optimal_route, feasibility_result["Refuel Sectors"])
if feasibility_result["Can Fly Entire Route"]:
result = {
"Optimal Route": " -> ".join(optimal_route) + f" -> {optimal_route[0]}",
"Total Round Trip Distance": f"{optimal_distance} km",
"Total Fuel Required": feasibility_result["Total Fuel Required (kg)"],
"Total Flight Time": feasibility_result["Total Flight Time (hrs)"],
"Can Fly Entire Route": "Yes",
"Sector Details": feasibility_result["Sector Details"]
}
else:
result = {
"Optimal Route": " -> ".join(optimal_route) + f" -> {optimal_route[0]}",
"Total Round Trip Distance": f"{optimal_distance} km",
"Can Fly Entire Route": "No, refueling required in one or more sectors.",
"Sector Details": feasibility_result["Sector Details"]
}
return result, map_html
# Gradio Interface
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.Markdown("## Airport Route Feasibility Checker")
# Place components in two columns for results and map
with gr.Row():
with gr.Column():
airport_selector = gr.Dropdown(airport_options, multiselect=True, label="Select Airports (IATA - Name)")
aircraft_selector = gr.Dropdown(aircraft_options, label="Select Aircraft Type")
check_button = gr.Button("Check Route Feasibility")
result_output = gr.JSON(label="Feasibility Result (Route, Fuel, Refueling Info)")
with gr.Column():
gr.Markdown("## Route Map")
map_output = gr.HTML(label="Interactive Route Map with Refueling Sectors")
# Connect the button click to the check_route function
check_button.click(
fn=check_route,
inputs=[airport_selector, aircraft_selector],
outputs=[result_output, map_output]
)
# Launch the Gradio app
demo.launch()