Spaces:
Sleeping
Sleeping
# This file is modified from https://github.com/haotian-liu/LLaVA/ | |
import torch | |
import torch.nn as nn | |
from transformers import ( | |
CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig, | |
SiglipVisionModel, SiglipImageProcessor, SiglipVisionConfig | |
) | |
class CLIPVisionTower(nn.Module): | |
def __init__(self, vision_tower, args, delay_load=False): | |
super().__init__() | |
self.is_loaded = False | |
self.vision_tower_name = vision_tower | |
self.select_layer = args.mm_vision_select_layer | |
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') | |
if not delay_load: | |
self.load_model() | |
elif getattr(args, 'unfreeze_mm_vision_tower', False): | |
self.load_model() | |
else: | |
self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name) | |
def load_model(self, device_map=None): | |
if self.is_loaded: | |
print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name)) | |
return | |
self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) | |
self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map) | |
self.vision_tower.requires_grad_(False) | |
self.is_loaded = True | |
def feature_select(self, image_forward_outs): | |
image_features = image_forward_outs.hidden_states[self.select_layer] | |
if self.select_feature == 'patch': | |
image_features = image_features[:, 1:] | |
elif self.select_feature == 'cls_patch': | |
image_features = image_features | |
else: | |
raise ValueError(f'Unexpected select feature: {self.select_feature}') | |
return image_features | |
def forward(self, images): | |
if type(images) is list: | |
image_features = [] | |
for image in images: | |
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) | |
image_feature = self.feature_select(image_forward_out).to(image.dtype) | |
image_features.append(image_feature) | |
else: | |
image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) | |
image_features = self.feature_select(image_forward_outs).to(images.dtype) | |
return image_features | |
def dummy_feature(self): | |
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) | |
def dtype(self): | |
return self.vision_tower.dtype | |
def device(self): | |
return self.vision_tower.device | |
def config(self): | |
if self.is_loaded: | |
return self.vision_tower.config | |
else: | |
return self.cfg_only | |
def hidden_size(self): | |
return self.config.hidden_size | |
def num_patches_per_side(self): | |
return self.config.image_size // self.config.patch_size | |
def num_patches(self): | |
return (self.config.image_size // self.config.patch_size) ** 2 | |
def image_size(self): | |
return self.config.image_size | |
class SiglipVisionTower(nn.Module): | |
def __init__(self, vision_tower, args, delay_load=False): | |
super().__init__() | |
self.is_loaded = False | |
self.vision_tower_name = vision_tower | |
self.select_layer = args.mm_vision_select_layer | |
self.input_image_size = args.input_image_size | |
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') | |
self.is_loaded = False | |
if not delay_load: | |
self.load_model() | |
else: | |
self.cfg_only = SiglipVisionConfig.from_pretrained(self.vision_tower_name) | |
def load_model(self, device_map=None): | |
if self. is_loaded: | |
return | |
self.image_processor = SiglipImageProcessor.from_pretrained(self.vision_tower_name) | |
self.vision_tower = SiglipVisionModel.from_pretrained(self.vision_tower_name) | |
self.image_processor.crop_size = {'height':self.input_image_size, 'width':self.input_image_size} | |
self.is_loaded = True | |
def feature_select(self, image_forward_outs, dtype): | |
image_features = image_forward_outs.hidden_states | |
if self.select_feature == 'patch': | |
image_features = image_features[self.select_layer].to(dtype) | |
elif self.select_feature == 'list': | |
image_features = [feature.to(dtype) for feature in image_features[::7]] | |
else: | |
raise ValueError(f'Unexpected select feature: {self.select_feature}') | |
return image_features | |
def forward(self, images): | |
if type(images) is list: | |
image_features = [] | |
for image in images: | |
image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) | |
image_feature = self.feature_select(image_forward_out, image.dtype) | |
image_features.append(image_feature) | |
else: | |
batch_size = images.shape[0] | |
chunk_size = 256 | |
image_features = [] | |
for i in range(0, batch_size, chunk_size): | |
chunk = images[i:i+chunk_size].to(device=self.device, dtype=self.dtype) | |
chunk_forward_outs = self.vision_tower(chunk, output_hidden_states=True) | |
chunk_features = self.feature_select(chunk_forward_outs, images.dtype) | |
image_features.append(chunk_features) | |
image_features = torch.cat(image_features, dim=0) | |
return image_features | |
def dummy_feature(self): | |
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) | |
def dtype(self): | |
return self.vision_tower.dtype | |
def device(self): | |
return self.vision_tower.device | |
def config(self): | |
if self.is_loaded: | |
return self.vision_tower.config | |
else: | |
return self.cfg_only | |
def hidden_size(self): | |
return self.config.hidden_size | |
def num_patches(self): | |
return (self.config.image_size // self.config.patch_size) ** 2 | |
def num_patches_per_side(self): | |
return self.config.image_size // self.config.patch_size | |
def image_size(self): | |
return self.config.image_size |