|
import torch |
|
from typing import List, Union, Dict, Any, Callable, Optional, Tuple |
|
|
|
from diffusers.image_processor import PipelineImageInput |
|
from diffusers import StableDiffusionInpaintPipeline, StableDiffusionXLInpaintPipeline |
|
from diffusers.models import AsymmetricAutoencoderKL |
|
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput |
|
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput |
|
from relighting.pipeline_utils import custom_prepare_latents, custom_prepare_mask_latents, rescale_noise_cfg |
|
|
|
class CustomStableDiffusionInpaintPipeline(StableDiffusionInpaintPipeline): |
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
image: PipelineImageInput = None, |
|
mask_image: PipelineImageInput = None, |
|
masked_image_latents: torch.FloatTensor = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
strength: float = 1.0, |
|
num_inference_steps: int = 50, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
newx: int = 0, |
|
newy: int = 0, |
|
newr: int = 256, |
|
current_seed=0, |
|
use_noise_moving=True, |
|
): |
|
|
|
self.prepare_mask_latents = custom_prepare_mask_latents.__get__(self, CustomStableDiffusionInpaintPipeline) |
|
self.prepare_latents = custom_prepare_latents.__get__(self, CustomStableDiffusionInpaintPipeline) |
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
height, |
|
width, |
|
strength, |
|
callback_steps, |
|
negative_prompt, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
) |
|
prompt_embeds, negative_prompt_embeds = self.encode_prompt( |
|
prompt, |
|
device, |
|
num_images_per_prompt, |
|
do_classifier_free_guidance, |
|
negative_prompt, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
) |
|
|
|
|
|
|
|
if do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps, num_inference_steps = self.get_timesteps( |
|
num_inference_steps=num_inference_steps, strength=strength, device=device |
|
) |
|
|
|
if num_inference_steps < 1: |
|
raise ValueError( |
|
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" |
|
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." |
|
) |
|
|
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
|
|
is_strength_max = strength == 1.0 |
|
|
|
|
|
|
|
init_image = self.image_processor.preprocess(image, height=height, width=width) |
|
init_image = init_image.to(dtype=torch.float32) |
|
|
|
|
|
num_channels_latents = self.vae.config.latent_channels |
|
num_channels_unet = self.unet.config.in_channels |
|
return_image_latents = num_channels_unet == 4 |
|
|
|
latents_outputs = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
image=init_image, |
|
timestep=latent_timestep, |
|
is_strength_max=is_strength_max, |
|
return_noise=True, |
|
return_image_latents=return_image_latents, |
|
newx=newx, |
|
newy=newy, |
|
newr=newr, |
|
current_seed=current_seed, |
|
use_noise_moving=use_noise_moving, |
|
) |
|
|
|
if return_image_latents: |
|
latents, noise, image_latents = latents_outputs |
|
else: |
|
latents, noise = latents_outputs |
|
|
|
|
|
mask_condition = self.mask_processor.preprocess(mask_image, height=height, width=width) |
|
|
|
if masked_image_latents is None: |
|
masked_image = init_image * (mask_condition < 0.5) |
|
else: |
|
masked_image = masked_image_latents |
|
|
|
mask, masked_image_latents = self.prepare_mask_latents( |
|
mask_condition, |
|
masked_image, |
|
batch_size * num_images_per_prompt, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
do_classifier_free_guidance, |
|
) |
|
|
|
|
|
if num_channels_unet == 9: |
|
|
|
num_channels_mask = mask.shape[1] |
|
num_channels_masked_image = masked_image_latents.shape[1] |
|
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: |
|
raise ValueError( |
|
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" |
|
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" |
|
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" |
|
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" |
|
" `pipeline.unet` or your `mask_image` or `image` input." |
|
) |
|
elif num_channels_unet != 4: |
|
raise ValueError( |
|
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}." |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
if num_channels_unet == 9: |
|
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) |
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
if num_channels_unet == 4: |
|
init_latents_proper = image_latents[:1] |
|
init_mask = mask[:1] |
|
|
|
if i < len(timesteps) - 1: |
|
noise_timestep = timesteps[i + 1] |
|
init_latents_proper = self.scheduler.add_noise( |
|
init_latents_proper, noise, torch.tensor([noise_timestep]) |
|
) |
|
|
|
latents = (1 - init_mask) * init_latents_proper + init_mask * latents |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
if not output_type == "latent": |
|
condition_kwargs = {} |
|
if isinstance(self.vae, AsymmetricAutoencoderKL): |
|
init_image = init_image.to(device=device, dtype=masked_image_latents.dtype) |
|
init_image_condition = init_image.clone() |
|
init_image = self._encode_vae_image(init_image, generator=generator) |
|
mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype) |
|
condition_kwargs = {"image": init_image_condition, "mask": mask_condition} |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, **condition_kwargs)[0] |
|
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype) |
|
else: |
|
image = latents |
|
has_nsfw_concept = None |
|
|
|
if has_nsfw_concept is None: |
|
do_denormalize = [True] * image.shape[0] |
|
else: |
|
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image, has_nsfw_concept) |
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) |
|
|
|
class CustomStableDiffusionXLInpaintPipeline(StableDiffusionXLInpaintPipeline): |
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
image: PipelineImageInput = None, |
|
mask_image: PipelineImageInput = None, |
|
masked_image_latents: torch.FloatTensor = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
strength: float = 0.9999, |
|
num_inference_steps: int = 50, |
|
denoising_start: Optional[float] = None, |
|
denoising_end: Optional[float] = None, |
|
guidance_scale: float = 7.5, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
original_size: Tuple[int, int] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
target_size: Tuple[int, int] = None, |
|
negative_original_size: Optional[Tuple[int, int]] = None, |
|
negative_crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
negative_target_size: Optional[Tuple[int, int]] = None, |
|
aesthetic_score: float = 6.0, |
|
negative_aesthetic_score: float = 2.5, |
|
newx: int = 0, |
|
newy: int = 0, |
|
newr: int = 256, |
|
current_seed=0, |
|
use_noise_moving=True, |
|
): |
|
|
|
self.prepare_mask_latents = custom_prepare_mask_latents.__get__(self, CustomStableDiffusionXLInpaintPipeline) |
|
self.prepare_latents = custom_prepare_latents.__get__(self, CustomStableDiffusionXLInpaintPipeline) |
|
|
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
strength, |
|
callback_steps, |
|
negative_prompt, |
|
negative_prompt_2, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
) |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
text_encoder_lora_scale = ( |
|
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None |
|
) |
|
|
|
( |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
lora_scale=text_encoder_lora_scale, |
|
) |
|
|
|
|
|
def denoising_value_valid(dnv): |
|
return isinstance(denoising_end, float) and 0 < dnv < 1 |
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps, num_inference_steps = self.get_timesteps( |
|
num_inference_steps, strength, device, denoising_start=denoising_start if denoising_value_valid else None |
|
) |
|
|
|
if num_inference_steps < 1: |
|
raise ValueError( |
|
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" |
|
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." |
|
) |
|
|
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) |
|
|
|
is_strength_max = strength == 1.0 |
|
|
|
|
|
init_image = self.image_processor.preprocess(image, height=height, width=width) |
|
init_image = init_image.to(dtype=torch.float32) |
|
|
|
mask = self.mask_processor.preprocess(mask_image, height=height, width=width) |
|
|
|
if masked_image_latents is not None: |
|
masked_image = masked_image_latents |
|
elif init_image.shape[1] == 4: |
|
|
|
masked_image = None |
|
else: |
|
masked_image = init_image * (mask < 0.5) |
|
|
|
|
|
num_channels_latents = self.vae.config.latent_channels |
|
num_channels_unet = self.unet.config.in_channels |
|
return_image_latents = num_channels_unet == 4 |
|
|
|
|
|
latents_outputs = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
image=init_image, |
|
timestep=latent_timestep, |
|
is_strength_max=is_strength_max, |
|
return_noise=True, |
|
return_image_latents=return_image_latents, |
|
newx=newx, |
|
newy=newy, |
|
newr=newr, |
|
current_seed=current_seed, |
|
use_noise_moving=use_noise_moving, |
|
) |
|
|
|
if return_image_latents: |
|
latents, noise, image_latents = latents_outputs |
|
else: |
|
latents, noise = latents_outputs |
|
|
|
|
|
mask, masked_image_latents = self.prepare_mask_latents( |
|
mask, |
|
masked_image, |
|
batch_size * num_images_per_prompt, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
do_classifier_free_guidance, |
|
) |
|
|
|
|
|
if num_channels_unet == 9: |
|
|
|
num_channels_mask = mask.shape[1] |
|
num_channels_masked_image = masked_image_latents.shape[1] |
|
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: |
|
raise ValueError( |
|
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" |
|
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" |
|
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" |
|
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" |
|
" `pipeline.unet` or your `mask_image` or `image` input." |
|
) |
|
elif num_channels_unet != 4: |
|
raise ValueError( |
|
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}." |
|
) |
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
height, width = latents.shape[-2:] |
|
height = height * self.vae_scale_factor |
|
width = width * self.vae_scale_factor |
|
|
|
original_size = original_size or (height, width) |
|
target_size = target_size or (height, width) |
|
|
|
|
|
if negative_original_size is None: |
|
negative_original_size = original_size |
|
if negative_target_size is None: |
|
negative_target_size = target_size |
|
|
|
add_text_embeds = pooled_prompt_embeds |
|
add_time_ids, add_neg_time_ids = self._get_add_time_ids( |
|
original_size, |
|
crops_coords_top_left, |
|
target_size, |
|
aesthetic_score, |
|
negative_aesthetic_score, |
|
negative_original_size, |
|
negative_crops_coords_top_left, |
|
negative_target_size, |
|
dtype=prompt_embeds.dtype, |
|
) |
|
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) |
|
|
|
if do_classifier_free_guidance: |
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) |
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) |
|
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) |
|
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) |
|
|
|
prompt_embeds = prompt_embeds.to(device) |
|
add_text_embeds = add_text_embeds.to(device) |
|
add_time_ids = add_time_ids.to(device) |
|
|
|
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
|
|
if ( |
|
denoising_end is not None |
|
and denoising_start is not None |
|
and denoising_value_valid(denoising_end) |
|
and denoising_value_valid(denoising_start) |
|
and denoising_start >= denoising_end |
|
): |
|
raise ValueError( |
|
f"`denoising_start`: {denoising_start} cannot be larger than or equal to `denoising_end`: " |
|
+ f" {denoising_end} when using type float." |
|
) |
|
elif denoising_end is not None and denoising_value_valid(denoising_end): |
|
discrete_timestep_cutoff = int( |
|
round( |
|
self.scheduler.config.num_train_timesteps |
|
- (denoising_end * self.scheduler.config.num_train_timesteps) |
|
) |
|
) |
|
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) |
|
timesteps = timesteps[:num_inference_steps] |
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
|
|
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
if num_channels_unet == 9: |
|
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) |
|
|
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
if num_channels_unet == 4: |
|
init_latents_proper = image_latents[:1] |
|
init_mask = mask[:1] |
|
|
|
if i < len(timesteps) - 1: |
|
noise_timestep = timesteps[i + 1] |
|
init_latents_proper = self.scheduler.add_noise( |
|
init_latents_proper, noise, torch.tensor([noise_timestep]) |
|
) |
|
|
|
latents = (1 - init_mask) * init_latents_proper + init_mask * latents |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
callback(i, t, latents) |
|
|
|
if not output_type == "latent": |
|
|
|
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
|
|
if needs_upcasting: |
|
self.upcast_vae() |
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
|
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
|
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
else: |
|
return StableDiffusionXLPipelineOutput(images=latents) |
|
|
|
|
|
if self.watermark is not None: |
|
image = self.watermark.apply_watermark(image) |
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return StableDiffusionXLPipelineOutput(images=image) |
|
|