File size: 16,499 Bytes
dd06d6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
# inpaint the ball on an image
# this one is design for general image that does not require special location to place
import torch
import argparse
import numpy as np
import torch.distributed as dist
import os
from PIL import Image
from tqdm.auto import tqdm
import json
from relighting.inpainter import BallInpainter
from relighting.mask_utils import MaskGenerator
from relighting.ball_processor import (
get_ideal_normal_ball,
crop_ball
)
from relighting.dataset import GeneralLoader
from relighting.utils import name2hash
import relighting.dist_utils as dist_util
import time
# cross import from inpaint_multi-illum.py
from relighting.argument import (
SD_MODELS,
CONTROLNET_MODELS,
VAE_MODELS
)
def create_argparser():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", type=str, required=True ,help='directory that contain the image') #dataset name or directory
parser.add_argument("--ball_size", type=int, default=256, help="size of the ball in pixel")
parser.add_argument("--ball_dilate", type=int, default=20, help="How much pixel to dilate the ball to make a sharper edge")
parser.add_argument("--prompt", type=str, default="a perfect mirrored reflective chrome ball sphere")
parser.add_argument("--prompt_dark", type=str, default="a perfect black dark mirrored reflective chrome ball sphere")
parser.add_argument("--negative_prompt", type=str, default="matte, diffuse, flat, dull")
parser.add_argument("--model_option", default="sdxl", help='selecting fancy model option (sd15_old, sd15_new, sd21, sdxl, sdxl_turbo)') # [sd15_old, sd15_new, or sd21]
parser.add_argument("--output_dir", required=True, type=str, help="output directory")
parser.add_argument("--img_height", type=int, default=1024, help="Dataset Image Height")
parser.add_argument("--img_width", type=int, default=1024, help="Dataset Image Width")
# some good seed 0, 37, 71, 125, 140, 196, 307, 434, 485, 575 | 9021, 9166, 9560, 9814, but default auto is for fairness
parser.add_argument("--seed", default="auto", type=str, help="Seed: right now we use single seed instead to reduce the time, (Auto will use hash file name to generate seed)")
parser.add_argument("--denoising_step", default=30, type=int, help="number of denoising step of diffusion model")
parser.add_argument("--control_scale", default=0.5, type=float, help="controlnet conditioning scale")
parser.add_argument("--guidance_scale", default=5.0, type=float, help="guidance scale (also known as CFG)")
parser.add_argument('--no_controlnet', dest='use_controlnet', action='store_false', help='by default we using controlnet, we have option to disable to see the different')
parser.set_defaults(use_controlnet=True)
parser.add_argument('--no_force_square', dest='force_square', action='store_false', help='SDXL is trained for square image, we prefered the square input. but you use this option to disable reshape')
parser.set_defaults(force_square=True)
parser.add_argument('--no_random_loader', dest='random_loader', action='store_false', help="by default, we random how dataset load. This make us able to peak into the trend of result without waiting entire dataset. but can disable if prefereed")
parser.set_defaults(random_loader=True)
parser.add_argument('--cpu', dest='is_cpu', action='store_true', help="using CPU inference instead of GPU inference")
parser.set_defaults(is_cpu=False)
parser.add_argument('--offload', dest='offload', action='store_false', help="to enable diffusers cpu offload")
parser.set_defaults(offload=False)
parser.add_argument("--limit_input", default=0, type=int, help="limit number of image to process to n image (0 = no limit), useful for run smallset")
# LoRA stuff
parser.add_argument('--no_lora', dest='use_lora', action='store_false', help='by default we using lora, we have option to disable to see the different')
parser.set_defaults(use_lora=True)
parser.add_argument("--lora_path", default="models/ThisIsTheFinal-lora-hdr-continuous-largeT@900/0_-5/checkpoint-2500", type=str, help="LoRA Checkpoint path")
parser.add_argument("--lora_scale", default=0.75, type=float, help="LoRA scale factor")
# speed optimization stuff
parser.add_argument('--no_torch_compile', dest='use_torch_compile', action='store_false', help='by default we using torch compile for faster processing speed. disable it if your environemnt is lower than pytorch2.0')
parser.set_defaults(use_torch_compile=True)
# algorithm + iterative stuff
parser.add_argument("--algorithm", type=str, default="iterative", choices=["iterative", "normal"], help="Selecting between iterative or normal (single pass inpaint) algorithm")
parser.add_argument("--agg_mode", default="median", type=str)
parser.add_argument("--strength", default=0.8, type=float)
parser.add_argument("--num_iteration", default=2, type=int)
parser.add_argument("--ball_per_iteration", default=30, type=int)
parser.add_argument('--no_save_intermediate', dest='save_intermediate', action='store_false')
parser.set_defaults(save_intermediate=True)
parser.add_argument("--cache_dir", default="./temp_inpaint_iterative", type=str, help="cache directory for iterative inpaint")
# pararelle processing
parser.add_argument("--idx", default=0, type=int, help="index of the current process, useful for running on multiple node")
parser.add_argument("--total", default=1, type=int, help="total number of process")
# for HDR stuff
parser.add_argument("--max_negative_ev", default=-5, type=int, help="maximum negative EV for lora")
parser.add_argument("--ev", default="0,-2.5,-5", type=str, help="EV: list of EV to generate")
return parser
def get_ball_location(image_data, args):
if 'boundary' in image_data:
# support predefined boundary if need
x = image_data["boundary"]["x"]
y = image_data["boundary"]["y"]
r = image_data["boundary"]["size"]
# support ball dilation
half_dilate = args.ball_dilate // 2
# check if not left out-of-bound
if x - half_dilate < 0: x += half_dilate
if y - half_dilate < 0: y += half_dilate
# check if not right out-of-bound
if x + r + half_dilate > args.img_width: x -= half_dilate
if y + r + half_dilate > args.img_height: y -= half_dilate
else:
# we use top-left corner notation
x, y, r = ((args.img_width // 2) - (args.ball_size // 2), (args.img_height // 2) - (args.ball_size // 2), args.ball_size)
return x, y, r
def interpolate_embedding(pipe, args):
print("interpolate embedding...")
# get list of all EVs
ev_list = [float(x) for x in args.ev.split(",")]
interpolants = [ev / args.max_negative_ev for ev in ev_list]
print("EV : ", ev_list)
print("EV : ", interpolants)
# calculate prompt embeddings
prompt_normal = args.prompt
prompt_dark = args.prompt_dark
prompt_embeds_normal, _, pooled_prompt_embeds_normal, _ = pipe.pipeline.encode_prompt(prompt_normal)
prompt_embeds_dark, _, pooled_prompt_embeds_dark, _ = pipe.pipeline.encode_prompt(prompt_dark)
# interpolate embeddings
interpolate_embeds = []
for t in interpolants:
int_prompt_embeds = prompt_embeds_normal + t * (prompt_embeds_dark - prompt_embeds_normal)
int_pooled_prompt_embeds = pooled_prompt_embeds_normal + t * (pooled_prompt_embeds_dark - pooled_prompt_embeds_normal)
interpolate_embeds.append((int_prompt_embeds, int_pooled_prompt_embeds))
return dict(zip(ev_list, interpolate_embeds))
def main():
# load arguments
args = create_argparser().parse_args()
# get local rank
if args.is_cpu:
device = torch.device("cpu")
torch_dtype = torch.float32
else:
device = dist_util.dev()
torch_dtype = torch.float16
# so, we need ball_dilate >= 16 (2*vae_scale_factor) to make our mask shape = (272, 272)
assert args.ball_dilate % 2 == 0 # ball dilation should be symmetric
# create controlnet pipeline
if args.model_option in ["sdxl", "sdxl_fast", "sdxl_turbo"] and args.use_controlnet:
model, controlnet = SD_MODELS[args.model_option], CONTROLNET_MODELS[args.model_option]
pipe = BallInpainter.from_sdxl(
model=model,
controlnet=controlnet,
device=device,
torch_dtype = torch_dtype,
offload = args.offload
)
elif args.model_option in ["sdxl", "sdxl_fast", "sdxl_turbo"] and not args.use_controlnet:
model = SD_MODELS[args.model_option]
pipe = BallInpainter.from_sdxl(
model=model,
controlnet=None,
device=device,
torch_dtype = torch_dtype,
offload = args.offload
)
elif args.use_controlnet:
model, controlnet = SD_MODELS[args.model_option], CONTROLNET_MODELS[args.model_option]
pipe = BallInpainter.from_sd(
model=model,
controlnet=controlnet,
device=device,
torch_dtype = torch_dtype,
offload = args.offload
)
else:
model = SD_MODELS[args.model_option]
pipe = BallInpainter.from_sd(
model=model,
controlnet=None,
device=device,
torch_dtype = torch_dtype,
offload = args.offload
)
if args.model_option in ["sdxl_turbo"]:
# Guidance scale is not supported in sdxl_turbo
args.guidance_scale = 0.0
if args.lora_scale > 0 and args.lora_path is None:
raise ValueError("lora scale is not 0 but lora path is not set")
if (args.lora_path is not None) and (args.use_lora):
print(f"using lora path {args.lora_path}")
print(f"using lora scale {args.lora_scale}")
pipe.pipeline.load_lora_weights(args.lora_path)
pipe.pipeline.fuse_lora(lora_scale=args.lora_scale) # fuse lora weight w' = w + \alpha \Delta w
enabled_lora = True
else:
enabled_lora = False
if args.use_torch_compile:
try:
print("compiling unet model")
start_time = time.time()
pipe.pipeline.unet = torch.compile(pipe.pipeline.unet, mode="reduce-overhead", fullgraph=True)
print("Model compilation time: ", time.time() - start_time)
except:
pass
# default height for sdxl is 1024, if not set, we set default height.
if args.model_option == "sdxl" and args.img_height == 0 and args.img_width == 0:
args.img_height = 1024
args.img_width = 1024
# load dataset
dataset = GeneralLoader(
root=args.dataset,
resolution=(args.img_width, args.img_height),
force_square=args.force_square,
return_dict=True,
random_shuffle=args.random_loader,
process_id=args.idx,
process_total=args.total,
limit_input=args.limit_input,
)
# interpolate embedding
embedding_dict = interpolate_embedding(pipe, args)
# prepare mask and normal ball
mask_generator = MaskGenerator()
normal_ball, mask_ball = get_ideal_normal_ball(size=args.ball_size+args.ball_dilate)
_, mask_ball_for_crop = get_ideal_normal_ball(size=args.ball_size)
# make output directory if not exist
raw_output_dir = os.path.join(args.output_dir, "raw")
control_output_dir = os.path.join(args.output_dir, "control")
square_output_dir = os.path.join(args.output_dir, "square")
os.makedirs(args.output_dir, exist_ok=True)
os.makedirs(raw_output_dir, exist_ok=True)
os.makedirs(control_output_dir, exist_ok=True)
os.makedirs(square_output_dir, exist_ok=True)
# create split seed
# please DO NOT manual replace this line, use --seed option instead
seeds = args.seed.split(",")
for image_data in tqdm(dataset):
input_image = image_data["image"]
image_path = image_data["path"]
for ev, (prompt_embeds, pooled_prompt_embeds) in embedding_dict.items():
# create output file name (we always use png to prevent quality loss)
ev_str = str(ev).replace(".", "") if ev != 0 else "-00"
outname = os.path.basename(image_path).split(".")[0] + f"_ev{ev_str}"
# we use top-left corner notation (which is different from aj.aek's center point notation)
x, y, r = get_ball_location(image_data, args)
# create inpaint mask
mask = mask_generator.generate_single(
input_image, mask_ball,
x - (args.ball_dilate // 2),
y - (args.ball_dilate // 2),
r + args.ball_dilate
)
seeds = tqdm(seeds, desc="seeds") if len(seeds) > 10 else seeds
#replacely create image with differnt seed
for seed in seeds:
start_time = time.time()
# set seed, if seed auto we use file name as seed
if seed == "auto":
filename = os.path.basename(image_path).split(".")[0]
seed = name2hash(filename)
outpng = f"{outname}.png"
cache_name = f"{outname}"
else:
seed = int(seed)
outpng = f"{outname}_seed{seed}.png"
cache_name = f"{outname}_seed{seed}"
# skip if file exist, useful for resuming
if os.path.exists(os.path.join(square_output_dir, outpng)):
continue
generator = torch.Generator().manual_seed(seed)
kwargs = {
"prompt_embeds": prompt_embeds,
"pooled_prompt_embeds": pooled_prompt_embeds,
'negative_prompt': args.negative_prompt,
'num_inference_steps': args.denoising_step,
'generator': generator,
'image': input_image,
'mask_image': mask,
'strength': 1.0,
'current_seed': seed, # we still need seed in the pipeline!
'controlnet_conditioning_scale': args.control_scale,
'height': args.img_height,
'width': args.img_width,
'normal_ball': normal_ball,
'mask_ball': mask_ball,
'x': x,
'y': y,
'r': r,
'guidance_scale': args.guidance_scale,
}
if enabled_lora:
kwargs["cross_attention_kwargs"] = {"scale": args.lora_scale}
if args.algorithm == "normal":
output_image = pipe.inpaint(**kwargs).images[0]
elif args.algorithm == "iterative":
# This is still buggy
print("using inpainting iterative, this is going to take a while...")
kwargs.update({
"strength": args.strength,
"num_iteration": args.num_iteration,
"ball_per_iteration": args.ball_per_iteration,
"agg_mode": args.agg_mode,
"save_intermediate": args.save_intermediate,
"cache_dir": os.path.join(args.cache_dir, cache_name),
})
output_image = pipe.inpaint_iterative(**kwargs)
else:
raise NotImplementedError(f"Unknown algorithm {args.algorithm}")
square_image = output_image.crop((x, y, x+r, y+r))
# return the most recent control_image for sanity check
control_image = pipe.get_cache_control_image()
if control_image is not None:
control_image.save(os.path.join(control_output_dir, outpng))
# save image
output_image.save(os.path.join(raw_output_dir, outpng))
square_image.save(os.path.join(square_output_dir, outpng))
if __name__ == "__main__":
main() |