Spaces:
Sleeping
Sleeping
introducing parallel processing to make chunking and embedding quicker
Browse files- aimakerspace/text_utils.py +31 -2
- aimakerspace/vectordatabase.py +48 -5
- backend/rag.py +42 -5
- frontend/src/App.js +65 -30
aimakerspace/text_utils.py
CHANGED
@@ -1,6 +1,13 @@
|
|
1 |
import os
|
2 |
from typing import List
|
3 |
import PyPDF2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
|
6 |
class TextFileLoader:
|
@@ -42,6 +49,7 @@ class CharacterTextSplitter:
|
|
42 |
self,
|
43 |
chunk_size: int = 1000,
|
44 |
chunk_overlap: int = 200,
|
|
|
45 |
):
|
46 |
assert (
|
47 |
chunk_size > chunk_overlap
|
@@ -49,6 +57,7 @@ class CharacterTextSplitter:
|
|
49 |
|
50 |
self.chunk_size = chunk_size
|
51 |
self.chunk_overlap = chunk_overlap
|
|
|
52 |
|
53 |
def split(self, text: str) -> List[str]:
|
54 |
chunks = []
|
@@ -57,9 +66,29 @@ class CharacterTextSplitter:
|
|
57 |
return chunks
|
58 |
|
59 |
def split_texts(self, texts: List[str]) -> List[str]:
|
|
|
60 |
chunks = []
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
return chunks
|
64 |
|
65 |
|
|
|
1 |
import os
|
2 |
from typing import List
|
3 |
import PyPDF2
|
4 |
+
import concurrent.futures
|
5 |
+
import logging
|
6 |
+
|
7 |
+
# Configure logging
|
8 |
+
logging.basicConfig(level=logging.INFO,
|
9 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
|
12 |
|
13 |
class TextFileLoader:
|
|
|
49 |
self,
|
50 |
chunk_size: int = 1000,
|
51 |
chunk_overlap: int = 200,
|
52 |
+
max_workers: int = 4
|
53 |
):
|
54 |
assert (
|
55 |
chunk_size > chunk_overlap
|
|
|
57 |
|
58 |
self.chunk_size = chunk_size
|
59 |
self.chunk_overlap = chunk_overlap
|
60 |
+
self.max_workers = max_workers
|
61 |
|
62 |
def split(self, text: str) -> List[str]:
|
63 |
chunks = []
|
|
|
66 |
return chunks
|
67 |
|
68 |
def split_texts(self, texts: List[str]) -> List[str]:
|
69 |
+
logger.info(f"Splitting {len(texts)} texts in parallel with {self.max_workers} workers")
|
70 |
chunks = []
|
71 |
+
|
72 |
+
# Use parallel processing if there are multiple texts or large single text
|
73 |
+
if len(texts) > 1 or (len(texts) == 1 and len(texts[0]) > 50000):
|
74 |
+
with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_workers) as executor:
|
75 |
+
# Map the split function to the list of texts
|
76 |
+
future_to_text = {executor.submit(self.split, text): text for text in texts}
|
77 |
+
|
78 |
+
# Collect results as they complete
|
79 |
+
for future in concurrent.futures.as_completed(future_to_text):
|
80 |
+
try:
|
81 |
+
text_chunks = future.result()
|
82 |
+
chunks.extend(text_chunks)
|
83 |
+
logger.info(f"Processed text chunk batch: {len(text_chunks)} chunks")
|
84 |
+
except Exception as e:
|
85 |
+
logger.error(f"Error processing text chunk: {str(e)}")
|
86 |
+
else:
|
87 |
+
# For small amounts of text, process sequentially
|
88 |
+
for text in texts:
|
89 |
+
chunks.extend(self.split(text))
|
90 |
+
|
91 |
+
logger.info(f"Completed splitting texts into {len(chunks)} chunks")
|
92 |
return chunks
|
93 |
|
94 |
|
aimakerspace/vectordatabase.py
CHANGED
@@ -1,8 +1,16 @@
|
|
1 |
import numpy as np
|
2 |
from collections import defaultdict
|
3 |
-
from typing import List, Tuple, Callable
|
4 |
from aimakerspace.openai_utils.embedding import EmbeddingModel
|
5 |
import asyncio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
|
8 |
def cosine_similarity(vector_a: np.array, vector_b: np.array) -> float:
|
@@ -14,9 +22,10 @@ def cosine_similarity(vector_a: np.array, vector_b: np.array) -> float:
|
|
14 |
|
15 |
|
16 |
class VectorDatabase:
|
17 |
-
def __init__(self, embedding_model: EmbeddingModel = None):
|
18 |
self.vectors = defaultdict(np.array)
|
19 |
self.embedding_model = embedding_model or EmbeddingModel()
|
|
|
20 |
|
21 |
def insert(self, key: str, vector: np.array) -> None:
|
22 |
self.vectors[key] = vector
|
@@ -48,9 +57,43 @@ class VectorDatabase:
|
|
48 |
return self.vectors.get(key, None)
|
49 |
|
50 |
async def abuild_from_list(self, list_of_text: List[str]) -> "VectorDatabase":
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
return self
|
55 |
|
56 |
|
|
|
1 |
import numpy as np
|
2 |
from collections import defaultdict
|
3 |
+
from typing import List, Tuple, Callable, Dict
|
4 |
from aimakerspace.openai_utils.embedding import EmbeddingModel
|
5 |
import asyncio
|
6 |
+
import logging
|
7 |
+
import concurrent.futures
|
8 |
+
import time
|
9 |
+
|
10 |
+
# Configure logging
|
11 |
+
logging.basicConfig(level=logging.INFO,
|
12 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
13 |
+
logger = logging.getLogger(__name__)
|
14 |
|
15 |
|
16 |
def cosine_similarity(vector_a: np.array, vector_b: np.array) -> float:
|
|
|
22 |
|
23 |
|
24 |
class VectorDatabase:
|
25 |
+
def __init__(self, embedding_model: EmbeddingModel = None, batch_size: int = 25):
|
26 |
self.vectors = defaultdict(np.array)
|
27 |
self.embedding_model = embedding_model or EmbeddingModel()
|
28 |
+
self.batch_size = batch_size # Process embeddings in batches for better performance
|
29 |
|
30 |
def insert(self, key: str, vector: np.array) -> None:
|
31 |
self.vectors[key] = vector
|
|
|
57 |
return self.vectors.get(key, None)
|
58 |
|
59 |
async def abuild_from_list(self, list_of_text: List[str]) -> "VectorDatabase":
|
60 |
+
start_time = time.time()
|
61 |
+
|
62 |
+
if not list_of_text:
|
63 |
+
logger.warning("Empty list provided to build vector database")
|
64 |
+
return self
|
65 |
+
|
66 |
+
logger.info(f"Building embeddings for {len(list_of_text)} text chunks in batches of {self.batch_size}")
|
67 |
+
|
68 |
+
# Process in batches to avoid overwhelming the API
|
69 |
+
batches = [list_of_text[i:i + self.batch_size] for i in range(0, len(list_of_text), self.batch_size)]
|
70 |
+
logger.info(f"Split into {len(batches)} batches")
|
71 |
+
|
72 |
+
for i, batch in enumerate(batches):
|
73 |
+
batch_start = time.time()
|
74 |
+
logger.info(f"Processing batch {i+1}/{len(batches)} with {len(batch)} text chunks")
|
75 |
+
|
76 |
+
try:
|
77 |
+
# Get embeddings for this batch
|
78 |
+
embeddings = await self.embedding_model.async_get_embeddings(batch)
|
79 |
+
|
80 |
+
# Insert into vector database
|
81 |
+
for text, embedding in zip(batch, embeddings):
|
82 |
+
self.insert(text, np.array(embedding))
|
83 |
+
|
84 |
+
batch_duration = time.time() - batch_start
|
85 |
+
logger.info(f"Batch {i+1} completed in {batch_duration:.2f}s")
|
86 |
+
|
87 |
+
# Small delay between batches to avoid rate limiting
|
88 |
+
if i < len(batches) - 1:
|
89 |
+
await asyncio.sleep(0.5)
|
90 |
+
|
91 |
+
except Exception as e:
|
92 |
+
logger.error(f"Error processing batch {i+1}: {str(e)}")
|
93 |
+
# Continue with next batch even if this one failed
|
94 |
+
|
95 |
+
total_duration = time.time() - start_time
|
96 |
+
logger.info(f"Vector database built with {len(self.vectors)} vectors in {total_duration:.2f}s")
|
97 |
return self
|
98 |
|
99 |
|
backend/rag.py
CHANGED
@@ -92,7 +92,7 @@ class RetrievalAugmentedQAPipeline:
|
|
92 |
}
|
93 |
|
94 |
def process_file(file_path: str, file_name: str) -> List[str]:
|
95 |
-
"""Process an uploaded file and convert it to text chunks"""
|
96 |
logger.info(f"Processing file: {file_name} at path: {file_path}")
|
97 |
|
98 |
try:
|
@@ -117,10 +117,20 @@ def process_file(file_path: str, file_name: str) -> List[str]:
|
|
117 |
logger.warning("No document content loaded")
|
118 |
return ["No content found in the document"]
|
119 |
|
120 |
-
# Split text into chunks
|
121 |
-
|
|
|
|
|
|
|
|
|
122 |
text_chunks = text_splitter.split_texts(documents)
|
123 |
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
logger.info(f"Split document into {len(text_chunks)} chunks")
|
125 |
return text_chunks
|
126 |
|
@@ -130,23 +140,50 @@ def process_file(file_path: str, file_name: str) -> List[str]:
|
|
130 |
return [f"Error processing file: {str(e)}"]
|
131 |
|
132 |
async def setup_vector_db(texts: List[str]) -> VectorDatabase:
|
133 |
-
"""Create vector database from text chunks"""
|
134 |
logger.info(f"Setting up vector database with {len(texts)} text chunks")
|
135 |
|
|
|
136 |
embedding_model = EmbeddingModel()
|
137 |
-
|
|
|
138 |
|
139 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
await vector_db.abuild_from_list(texts)
|
141 |
|
|
|
142 |
vector_db.documents = texts
|
143 |
|
144 |
logger.info(f"Vector database built with {len(texts)} documents")
|
145 |
return vector_db
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
except Exception as e:
|
147 |
logger.error(f"Error setting up vector database: {str(e)}")
|
148 |
logger.error(traceback.format_exc())
|
149 |
|
|
|
150 |
fallback_db = VectorDatabase(embedding_model=embedding_model)
|
151 |
error_text = "I'm sorry, but there was an error processing the document."
|
152 |
fallback_db.insert(error_text, [0.0] * 1536)
|
|
|
92 |
}
|
93 |
|
94 |
def process_file(file_path: str, file_name: str) -> List[str]:
|
95 |
+
"""Process an uploaded file and convert it to text chunks - optimized for speed"""
|
96 |
logger.info(f"Processing file: {file_name} at path: {file_path}")
|
97 |
|
98 |
try:
|
|
|
117 |
logger.warning("No document content loaded")
|
118 |
return ["No content found in the document"]
|
119 |
|
120 |
+
# Split text into chunks - use parallel processing
|
121 |
+
logger.info("Splitting document with parallel processing")
|
122 |
+
chunk_size = 1500 # Increased from 1000 for fewer chunks
|
123 |
+
chunk_overlap = 150 # Increased from 100 for better context
|
124 |
+
# Use 8 workers for parallel processing
|
125 |
+
text_splitter = CharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap, max_workers=8)
|
126 |
text_chunks = text_splitter.split_texts(documents)
|
127 |
|
128 |
+
# Limit chunks to avoid processing too many for speed
|
129 |
+
max_chunks = 40 # Reduced from default
|
130 |
+
if len(text_chunks) > max_chunks:
|
131 |
+
logger.warning(f"Too many chunks ({len(text_chunks)}), limiting to {max_chunks} for faster processing")
|
132 |
+
text_chunks = text_chunks[:max_chunks]
|
133 |
+
|
134 |
logger.info(f"Split document into {len(text_chunks)} chunks")
|
135 |
return text_chunks
|
136 |
|
|
|
140 |
return [f"Error processing file: {str(e)}"]
|
141 |
|
142 |
async def setup_vector_db(texts: List[str]) -> VectorDatabase:
|
143 |
+
"""Create vector database from text chunks - optimized with parallel processing"""
|
144 |
logger.info(f"Setting up vector database with {len(texts)} text chunks")
|
145 |
|
146 |
+
# Create embedding model to use with VectorDatabase
|
147 |
embedding_model = EmbeddingModel()
|
148 |
+
# Use batch size of 20 for better parallelization
|
149 |
+
vector_db = VectorDatabase(embedding_model=embedding_model, batch_size=20)
|
150 |
|
151 |
try:
|
152 |
+
# Limit number of chunks for faster processing
|
153 |
+
max_chunks = 40
|
154 |
+
if len(texts) > max_chunks:
|
155 |
+
logger.warning(f"Limiting {len(texts)} chunks to {max_chunks} for vector embedding")
|
156 |
+
texts = texts[:max_chunks]
|
157 |
+
|
158 |
+
# Build vector database with batch processing
|
159 |
+
logger.info("Building vector database with batch processing")
|
160 |
await vector_db.abuild_from_list(texts)
|
161 |
|
162 |
+
# Add documents property for compatibility
|
163 |
vector_db.documents = texts
|
164 |
|
165 |
logger.info(f"Vector database built with {len(texts)} documents")
|
166 |
return vector_db
|
167 |
+
except asyncio.TimeoutError:
|
168 |
+
logger.error(f"Vector database creation timed out after 300 seconds")
|
169 |
+
# Create minimal fallback DB with just a few documents
|
170 |
+
fallback_db = VectorDatabase(embedding_model=embedding_model)
|
171 |
+
if texts:
|
172 |
+
# Use just first few texts for minimal functionality
|
173 |
+
minimal_texts = texts[:3]
|
174 |
+
for text in minimal_texts:
|
175 |
+
fallback_db.insert(text, [0.0] * 1536) # Use zero vectors for speed
|
176 |
+
fallback_db.documents = minimal_texts
|
177 |
+
else:
|
178 |
+
error_text = "I'm sorry, but there was a timeout during document processing."
|
179 |
+
fallback_db.insert(error_text, [0.0] * 1536)
|
180 |
+
fallback_db.documents = [error_text]
|
181 |
+
return fallback_db
|
182 |
except Exception as e:
|
183 |
logger.error(f"Error setting up vector database: {str(e)}")
|
184 |
logger.error(traceback.format_exc())
|
185 |
|
186 |
+
# Create fallback DB for this error case
|
187 |
fallback_db = VectorDatabase(embedding_model=embedding_model)
|
188 |
error_text = "I'm sorry, but there was an error processing the document."
|
189 |
fallback_db.insert(error_text, [0.0] * 1536)
|
frontend/src/App.js
CHANGED
@@ -148,6 +148,8 @@ function FileUploader({ onFileUpload }) {
|
|
148 |
const [isUploading, setIsUploading] = useState(false);
|
149 |
const [uploadProgress, setUploadProgress] = useState(0);
|
150 |
const [processingStatus, setProcessingStatus] = useState(null);
|
|
|
|
|
151 |
|
152 |
const { getRootProps, getInputProps } = useDropzone({
|
153 |
maxFiles: 1,
|
@@ -294,13 +296,71 @@ function FileUploader({ onFileUpload }) {
|
|
294 |
}
|
295 |
});
|
296 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
// Status message based on current processing state
|
298 |
const getStatusMessage = () => {
|
|
|
|
|
|
|
299 |
switch(processingStatus) {
|
300 |
case 'starting':
|
301 |
return 'Initiating hyperspace jump...';
|
|
|
|
|
302 |
case 'processing':
|
303 |
-
return
|
304 |
case 'timeout':
|
305 |
return 'Document processing is taking longer than expected. Patience, young Padawan...';
|
306 |
case 'failed':
|
@@ -335,7 +395,7 @@ function FileUploader({ onFileUpload }) {
|
|
335 |
<>
|
336 |
<Text color="brand.500">Uploading to the Jedi Archives...</Text>
|
337 |
<Progress
|
338 |
-
value={uploadProgress}
|
339 |
size="sm"
|
340 |
colorScheme="yellow"
|
341 |
width="100%"
|
@@ -370,37 +430,12 @@ function App() {
|
|
370 |
const handleFileUpload = (newSessionId, name) => {
|
371 |
setSessionId(newSessionId);
|
372 |
setFileName(name);
|
373 |
-
setIsDocProcessing(
|
374 |
setMessages([
|
375 |
-
{ text: `
|
376 |
]);
|
377 |
|
378 |
-
//
|
379 |
-
const checkStatus = async () => {
|
380 |
-
try {
|
381 |
-
const response = await axios.get(`${API_URL}/session/${newSessionId}/status`);
|
382 |
-
console.log('Status response:', response.data);
|
383 |
-
|
384 |
-
if (response.data.status === 'ready') {
|
385 |
-
setIsDocProcessing(false);
|
386 |
-
setMessages([
|
387 |
-
{ text: `"${name}" has been added to the Jedi Archives. What knowledge do you seek?`, isUser: false }
|
388 |
-
]);
|
389 |
-
return;
|
390 |
-
}
|
391 |
-
|
392 |
-
// Continue polling if still processing
|
393 |
-
if (response.data.status === 'processing') {
|
394 |
-
setTimeout(checkStatus, 2000);
|
395 |
-
}
|
396 |
-
} catch (error) {
|
397 |
-
console.error('Error checking status:', error);
|
398 |
-
// Continue polling even if there's an error
|
399 |
-
setTimeout(checkStatus, 3000);
|
400 |
-
}
|
401 |
-
};
|
402 |
-
|
403 |
-
checkStatus();
|
404 |
};
|
405 |
|
406 |
const handleSendMessage = async () => {
|
|
|
148 |
const [isUploading, setIsUploading] = useState(false);
|
149 |
const [uploadProgress, setUploadProgress] = useState(0);
|
150 |
const [processingStatus, setProcessingStatus] = useState(null);
|
151 |
+
const [processingProgress, setProcessingProgress] = useState(0);
|
152 |
+
const [processingSteps, setProcessingSteps] = useState(0);
|
153 |
|
154 |
const { getRootProps, getInputProps } = useDropzone({
|
155 |
maxFiles: 1,
|
|
|
296 |
}
|
297 |
});
|
298 |
|
299 |
+
// Move pollSessionStatus inside the component where it has access to the necessary variables
|
300 |
+
const pollSessionStatus = async (sessionId, file, retries = 40, interval = 5000) => {
|
301 |
+
// Increased retries from 30 to 40 for longer processing documents
|
302 |
+
let currentRetry = 0;
|
303 |
+
|
304 |
+
while (currentRetry < retries) {
|
305 |
+
try {
|
306 |
+
const statusUrl = `${API_URL}/session/${sessionId}/status`;
|
307 |
+
console.log(`Checking status (attempt ${currentRetry + 1}/${retries}):`, statusUrl);
|
308 |
+
|
309 |
+
const statusResponse = await axios.get(statusUrl, {
|
310 |
+
timeout: 30000 // 30 second timeout for status checks
|
311 |
+
});
|
312 |
+
|
313 |
+
console.log('Status response:', statusResponse.data);
|
314 |
+
|
315 |
+
if (statusResponse.data.status === 'ready') {
|
316 |
+
setProcessingStatus('complete');
|
317 |
+
setProcessingProgress(100);
|
318 |
+
onFileUpload(sessionId, file.name);
|
319 |
+
return;
|
320 |
+
} else if (statusResponse.data.status === 'failed') {
|
321 |
+
setProcessingStatus('failed');
|
322 |
+
throw new Error('Processing failed on server');
|
323 |
+
}
|
324 |
+
|
325 |
+
// Still processing, update progress based on attempt number
|
326 |
+
setProcessingStatus('processing');
|
327 |
+
// Calculate progress - more rapid at start, slower towards end
|
328 |
+
const progressIncrement = 75 / retries; // Max out at 75% during polling
|
329 |
+
setProcessingProgress(Math.min(5 + (currentRetry * progressIncrement), 75));
|
330 |
+
|
331 |
+
// Increment processing steps to show activity
|
332 |
+
setProcessingSteps(prev => prev + 1);
|
333 |
+
|
334 |
+
await new Promise(resolve => setTimeout(resolve, interval));
|
335 |
+
currentRetry++;
|
336 |
+
|
337 |
+
// Increase interval slightly for each retry to prevent overwhelming the server
|
338 |
+
interval = Math.min(interval * 1.1, 15000); // Cap at 15 seconds
|
339 |
+
} catch (error) {
|
340 |
+
console.error('Error checking status:', error);
|
341 |
+
|
342 |
+
// If we hit a timeout or network issue, wait a bit longer before retrying
|
343 |
+
await new Promise(resolve => setTimeout(resolve, interval * 2));
|
344 |
+
currentRetry++;
|
345 |
+
}
|
346 |
+
}
|
347 |
+
|
348 |
+
// If we've exhausted all retries and still don't have a ready status
|
349 |
+
throw new Error('Status polling timed out');
|
350 |
+
};
|
351 |
+
|
352 |
// Status message based on current processing state
|
353 |
const getStatusMessage = () => {
|
354 |
+
const steps = ['Analyzing text', 'Splitting document', 'Creating embeddings', 'Building vector database', 'Finalizing'];
|
355 |
+
const currentStep = steps[processingSteps % steps.length];
|
356 |
+
|
357 |
switch(processingStatus) {
|
358 |
case 'starting':
|
359 |
return 'Initiating hyperspace jump...';
|
360 |
+
case 'uploading':
|
361 |
+
return 'Sending document to the Jedi Archives...';
|
362 |
case 'processing':
|
363 |
+
return `${currentStep}... This may take several minutes.`;
|
364 |
case 'timeout':
|
365 |
return 'Document processing is taking longer than expected. Patience, young Padawan...';
|
366 |
case 'failed':
|
|
|
395 |
<>
|
396 |
<Text color="brand.500">Uploading to the Jedi Archives...</Text>
|
397 |
<Progress
|
398 |
+
value={processingStatus === 'uploading' ? uploadProgress : processingProgress}
|
399 |
size="sm"
|
400 |
colorScheme="yellow"
|
401 |
width="100%"
|
|
|
430 |
const handleFileUpload = (newSessionId, name) => {
|
431 |
setSessionId(newSessionId);
|
432 |
setFileName(name);
|
433 |
+
setIsDocProcessing(false);
|
434 |
setMessages([
|
435 |
+
{ text: `"${name}" has been added to the Jedi Archives. What knowledge do you seek?`, isUser: false }
|
436 |
]);
|
437 |
|
438 |
+
// Don't poll again - already handled in FileUploader
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
439 |
};
|
440 |
|
441 |
const handleSendMessage = async () => {
|