MarketingCopilot / app_flux.py
rtallam45's picture
Add files with LFS
2907cb7
raw
history blame
11.5 kB
import os
import argparse
import gradio as gr
from datetime import datetime
import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from huggingface_hub import snapshot_download
from PIL import Image
from model.cloth_masker import AutoMasker, vis_mask
from model.flux.pipeline_flux_tryon import FluxTryOnPipeline
from utils import resize_and_crop, resize_and_padding
def parse_args():
parser = argparse.ArgumentParser(description="FLUX Try-On Demo")
parser.add_argument(
"--base_model_path",
type=str,
default="black-forest-labs/FLUX.1-Fill-dev",
# default="Models/FLUX.1-Fill-dev",
help="The path to the base model to use for evaluation."
)
parser.add_argument(
"--resume_path",
type=str,
default="zhengchong/CatVTON",
help="The Path to the checkpoint of trained tryon model."
)
parser.add_argument(
"--output_dir",
type=str,
default="resource/demo/output",
help="The output directory where the model predictions will be written."
)
parser.add_argument(
"--mixed_precision",
type=str,
default="bf16",
choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision."
)
parser.add_argument(
"--allow_tf32",
action="store_true",
default=True,
help="Whether or not to allow TF32 on Ampere GPUs."
)
parser.add_argument(
"--width",
type=int,
default=768,
help="The width of the input image."
)
parser.add_argument(
"--height",
type=int,
default=1024,
help="The height of the input image."
)
return parser.parse_args()
def image_grid(imgs, rows, cols):
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new("RGB", size=(cols * w, rows * h))
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
return grid
def submit_function_flux(
person_image,
cloth_image,
cloth_type,
num_inference_steps,
guidance_scale,
seed,
show_type
):
# Process image editor input
person_image, mask = person_image["background"], person_image["layers"][0]
mask = Image.open(mask).convert("L")
if len(np.unique(np.array(mask))) == 1:
mask = None
else:
mask = np.array(mask)
mask[mask > 0] = 255
mask = Image.fromarray(mask)
# Set random seed
generator = None
if seed != -1:
generator = torch.Generator(device='cuda').manual_seed(seed)
# Process input images
person_image = Image.open(person_image).convert("RGB")
cloth_image = Image.open(cloth_image).convert("RGB")
# Adjust image sizes
person_image = resize_and_crop(person_image, (args.width, args.height))
cloth_image = resize_and_padding(cloth_image, (args.width, args.height))
# Process mask
if mask is not None:
mask = resize_and_crop(mask, (args.width, args.height))
else:
mask = automasker(
person_image,
cloth_type
)['mask']
mask = mask_processor.blur(mask, blur_factor=9)
# Inference
result_image = pipeline_flux(
image=person_image,
condition_image=cloth_image,
mask_image=mask,
height=args.height,
width=args.width,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
generator=generator
).images[0]
# Post-processing
masked_person = vis_mask(person_image, mask)
# Return result based on show type
if show_type == "result only":
return result_image
else:
width, height = person_image.size
if show_type == "input & result":
condition_width = width // 2
conditions = image_grid([person_image, cloth_image], 2, 1)
else:
condition_width = width // 3
conditions = image_grid([person_image, masked_person, cloth_image], 3, 1)
conditions = conditions.resize((condition_width, height), Image.NEAREST)
new_result_image = Image.new("RGB", (width + condition_width + 5, height))
new_result_image.paste(conditions, (0, 0))
new_result_image.paste(result_image, (condition_width + 5, 0))
return new_result_image
def person_example_fn(image_path):
return image_path
def app_gradio():
with gr.Blocks(title="CatVTON with FLUX.1-Fill-dev") as demo:
gr.Markdown("# CatVTON with FLUX.1-Fill-dev")
with gr.Row():
with gr.Column(scale=1, min_width=350):
with gr.Row():
image_path_flux = gr.Image(
type="filepath",
interactive=True,
visible=False,
)
person_image_flux = gr.ImageEditor(
interactive=True, label="Person Image", type="filepath"
)
with gr.Row():
with gr.Column(scale=1, min_width=230):
cloth_image_flux = gr.Image(
interactive=True, label="Condition Image", type="filepath"
)
with gr.Column(scale=1, min_width=120):
gr.Markdown(
'<span style="color: #808080; font-size: small;">Two ways to provide Mask:<br>1. Upload the person image and use the `πŸ–ŒοΈ` above to draw the Mask (higher priority)<br>2. Select the `Try-On Cloth Type` to generate automatically </span>'
)
cloth_type = gr.Radio(
label="Try-On Cloth Type",
choices=["upper", "lower", "overall"],
value="upper",
)
submit_flux = gr.Button("Submit")
gr.Markdown(
'<center><span style="color: #FF0000">!!! Click only Once, Wait for Delay !!!</span></center>'
)
with gr.Accordion("Advanced Options", open=False):
num_inference_steps_flux = gr.Slider(
label="Inference Step", minimum=10, maximum=100, step=5, value=50
)
# Guidence Scale
guidance_scale_flux = gr.Slider(
label="CFG Strenth", minimum=0.0, maximum=50, step=0.5, value=30
)
# Random Seed
seed_flux = gr.Slider(
label="Seed", minimum=-1, maximum=10000, step=1, value=42
)
show_type = gr.Radio(
label="Show Type",
choices=["result only", "input & result", "input & mask & result"],
value="input & mask & result",
)
with gr.Column(scale=2, min_width=500):
result_image_flux = gr.Image(interactive=False, label="Result")
with gr.Row():
# Photo Examples
root_path = "resource/demo/example"
with gr.Column():
gr.Examples(
examples=[
os.path.join(root_path, "person", "men", _)
for _ in os.listdir(os.path.join(root_path, "person", "men"))
],
examples_per_page=4,
inputs=image_path_flux,
label="Person Examples β‘ ",
)
gr.Examples(
examples=[
os.path.join(root_path, "person", "women", _)
for _ in os.listdir(os.path.join(root_path, "person", "women"))
],
examples_per_page=4,
inputs=image_path_flux,
label="Person Examples β‘‘",
)
gr.Markdown(
'<span style="color: #808080; font-size: small;">*Person examples come from the demos of <a href="https://huggingface.co/spaces/levihsu/OOTDiffusion">OOTDiffusion</a> and <a href="https://www.outfitanyone.org">OutfitAnyone</a>. </span>'
)
with gr.Column():
gr.Examples(
examples=[
os.path.join(root_path, "condition", "upper", _)
for _ in os.listdir(os.path.join(root_path, "condition", "upper"))
],
examples_per_page=4,
inputs=cloth_image_flux,
label="Condition Upper Examples",
)
gr.Examples(
examples=[
os.path.join(root_path, "condition", "overall", _)
for _ in os.listdir(os.path.join(root_path, "condition", "overall"))
],
examples_per_page=4,
inputs=cloth_image_flux,
label="Condition Overall Examples",
)
condition_person_exm = gr.Examples(
examples=[
os.path.join(root_path, "condition", "person", _)
for _ in os.listdir(os.path.join(root_path, "condition", "person"))
],
examples_per_page=4,
inputs=cloth_image_flux,
label="Condition Reference Person Examples",
)
gr.Markdown(
'<span style="color: #808080; font-size: small;">*Condition examples come from the Internet. </span>'
)
image_path_flux.change(
person_example_fn, inputs=image_path_flux, outputs=person_image_flux
)
submit_flux.click(
submit_function_flux,
[person_image_flux, cloth_image_flux, cloth_type, num_inference_steps_flux, guidance_scale_flux, seed_flux, show_type],
result_image_flux,
)
demo.queue().launch(share=True, show_error=True)
# θ§£ζžε‚ζ•°
args = parse_args()
# εŠ θ½½ζ¨‘εž‹
repo_path = snapshot_download(repo_id=args.resume_path)
pipeline_flux = FluxTryOnPipeline.from_pretrained(args.base_model_path)
pipeline_flux.load_lora_weights(
os.path.join(repo_path, "flux-lora"),
weight_name='pytorch_lora_weights.safetensors'
)
pipeline_flux.to("cuda", torch.bfloat16)
# εˆε§‹εŒ– AutoMasker
mask_processor = VaeImageProcessor(
vae_scale_factor=8,
do_normalize=False,
do_binarize=True,
do_convert_grayscale=True
)
automasker = AutoMasker(
densepose_ckpt=os.path.join(repo_path, "DensePose"),
schp_ckpt=os.path.join(repo_path, "SCHP"),
device='cuda'
)
if __name__ == "__main__":
app_gradio()