rmayormartins commited on
Commit
8d9557a
·
1 Parent(s): 1c4fb8b

Subindo arquivos

Browse files
Files changed (3) hide show
  1. README.md +39 -4
  2. app.py +1 -1
  3. example2.JPG +0 -0
README.md CHANGED
@@ -10,16 +10,51 @@ pinned: false
10
  license: ecl-2.0
11
  ---
12
 
13
- # YOLOv5 Sunspot Hunter
14
 
15
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
16
 
17
- ## Desenvolvedor
18
 
19
- Desenvolvido por Ramon Mayor Martins (2023)
20
 
21
  - Email: [rmayormartins@gmail.com](mailto:rmayormartins@gmail.com)
22
  - Homepage: [https://rmayormartins.github.io/](https://rmayormartins.github.io/)
23
  - Twitter: [@rmayormartins](https://twitter.com/rmayormartins)
24
  - GitHub: [https://github.com/rmayormartins](https://github.com/rmayormartins)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
 
10
  license: ecl-2.0
11
  ---
12
 
13
+ # YOLOv5 Sunspot Hunter 🌟
14
 
15
+ Explore the dynamic solar surface with the YOLOv5 Sunspot Hunter! This application is designed to detect and analyze sunspots using state-of-the-art object detection technology.
16
 
17
+ ## Developer
18
 
19
+ Developed by Ramon Mayor Martins (2023)
20
 
21
  - Email: [rmayormartins@gmail.com](mailto:rmayormartins@gmail.com)
22
  - Homepage: [https://rmayormartins.github.io/](https://rmayormartins.github.io/)
23
  - Twitter: [@rmayormartins](https://twitter.com/rmayormartins)
24
  - GitHub: [https://github.com/rmayormartins](https://github.com/rmayormartins)
25
+ - my Radio Callsign (PU4MAY) Brazil
26
+
27
+ ## About the Project
28
+
29
+ This tool using YOLOv5, an advanced neural network, for the detection and classification (hunting) of sunspots. The sunspot images were collected from several high-quality sources, including the SOHO satellite, and other NASA and ESA archives, under Creative Commons licenses. These images were then annotated with precision using Makesense.ai.
30
+
31
+ ## Key Features
32
+
33
+ - **Image Source:** The sunspot images were sourced from SOHO satellite, NASA, and ESA archives.
34
+ - **Labeling:** Annotations were done using Makesense.ai.
35
+ - **Model Training:** The model was trained with YOLOv5, achieving satisfactory metrics including mAP (mean Average Precision).
36
+ - **Model File:** The 'best.pt' file is used, which represents the model's optimal state after training.
37
+
38
+ ## How to Use
39
+
40
+ - **Launch:** Start the YOLOv5 Sunspot Hunter by running the `app.py` script in Gradio.
41
+ - **Image Upload:** Users can upload their own images of the sun or utilize current solar images from websites like [Space Weather Live](https://www.spaceweatherlive.com/en/solar-activity.html), [LMSAL](https://www.lmsal.com/solarsoft/latest_events/), [SOHO Realtime Images](https://soho.nascom.nasa.gov/data/realtime-images.html), and [The Sun Today](https://www.thesuntoday.org/sun/current-observations/).
42
+ - **Detection:** The tool processes the uploaded image, identifying and highlighting sunspots with high precision.
43
+ - **Results:** View the results instantly, with sunspots clearly marked and classified.
44
+
45
+ ## Feedback and Contributions
46
+
47
+ Feel free to reach out or contribute to the project. Your feedback and contributions are highly appreciated!
48
+
49
+ ## License
50
+
51
+ This project is released under the ECL-2.0 license.
52
+
53
+ ## Acknowledgments
54
+
55
+ Special thanks to the teams at NASA, ESA, and SOHO for providing valuable solar data.
56
+
57
+ ---
58
+ *Check out the configuration reference at [Hugging Face Spaces Config Reference](https://huggingface.co/docs/hub/spaces-config-reference).*
59
+
60
 
app.py CHANGED
@@ -40,7 +40,7 @@ iface = gr.Interface(
40
  outputs=gr.Image(type="pil"),
41
  title="YOLOv5 Sun Spot Hunter",
42
  description="Object detector (solar spot/sunspot hunter) trained using YOLOv5 and labeled in Makesense.ai",
43
- examples=[["example1.jpg"]]
44
  )
45
 
46
 
 
40
  outputs=gr.Image(type="pil"),
41
  title="YOLOv5 Sun Spot Hunter",
42
  description="Object detector (solar spot/sunspot hunter) trained using YOLOv5 and labeled in Makesense.ai",
43
+ examples=[["example1.jpg"], ["example2.jpg"]]
44
  )
45
 
46
 
example2.JPG ADDED