import re import os import time import base64 import requests import dotenv import mistune dotenv.load_dotenv() access_key = os.getenv('ACCESS_KEY') client_id = os.getenv('CLIENT_ID') client_secret = os.getenv('CLIENT_SECRET') refresh_token = os.getenv('REFRESH_TOKEN') blog_id = os.getenv('BLOG_ID') def extract_summary(text): text = text.replace("#", "").strip().lower() match = re.search(r"summary(.*?)highlights", text.replace("#", ""), re.DOTALL) if match: return match.group(1).replace("#", "").replace("\n", "").strip() return None def upload_image(image, api_key): url = f'https://api.imgbb.com/1/upload?key={api_key}' response = requests.post(url, data = {'image': image}) image_url = response.json()['data']['image']['url'] status_code = response.json()['status'] return image_url, status_code def generate_image(title, summary, category): extracted_summary = extract_summary(summary) if extracted_summary is None: extracted_summary = title url = f"https://image.pollinations.ai/prompt/(({category}))%20{title}%20%3A%20{extracted_summary}?width=1280&height=720&seed=623862700&nologo=true&model=turbo" data = requests.get(url).content encoded_image = base64.b64encode(data) image = encoded_image.decode('utf-8') image_url, status_code = upload_image(image, os.getenv('IMG_API_KEY')) if status_code != 200: return f"data:image/png;base64,{image}" return image_url def generate_post_html(title, summary, mindmap, category, citation): title = title.replace("{", r"{{").replace("}", r"}}") summary = summary.replace("{", r"{{").replace("}", r"}}") mindmap = mindmap.replace("{", r"{{").replace("}", r"}}") citation = citation.replace("{", r"{{").replace("}", r"}}") image = generate_image(title, summary, category) html_summary = mistune.html(summary) post = f"""


{html_summary.replace("&", "&")}



Mindmap



Citation

{mistune.html(citation.replace("&", "&"))}

""" return post, image def sanitize_citation(citation): pattern = r"(https://doi\.org/\S+)" sanitized_citation = re.sub( pattern, lambda match: f"[{match.group(1)}](https://doi.org/{match.group(1).split('/')[-1]})", citation ) return sanitized_citation def create_post(title, category, summary, mindmap, citation): post_title = title post_category = f"{category}" post_body, post_image = generate_post_html(title, summary, mindmap, category, sanitize_citation(citation)) with open('post.html', 'w', encoding='utf-8') as f: f.write(post_body) return post_title, post_category, post_body, post_image def post_post(title, category, body, image, i): data = None try: data = requests.post( url='https://oauth2.googleapis.com/token', data={ 'grant_type': 'refresh_token', 'client_secret': os.getenv(f'CLIENT_SECRET_{i}'), 'refresh_token': os.getenv(f'REFRESH_TOKEN_{i}'), 'client_id': os.getenv(f'CLIENT_ID_{i}'), }, ).json() url = f"https://blogger.googleapis.com/v3/blogs/{blog_id}/posts" headers = { 'Authorization': f"Bearer {data['access_token']}", "content-type": "application/json" } post_data = { "kind": "blogger#post", "blog": { "id": blog_id }, "images": [ { "url": image } ], "title": title, "content": body, "labels": [category, "recent"] } data = requests.post(url, headers=headers, json=post_data).json() if data['status'] == 'LIVE': return True else: print(data) return False except Exception as e: print(data) print('An error occurred:', str(e)) return False def post_blog(title, category, summary, mindmap, citation, uaccess_key): if uaccess_key != access_key: return False try: post_title, post_category, post_body, post_image = create_post(title, category, summary, mindmap, citation) i = 1 status = False while (i <= 2 and not status): print(f'Posting... Tries: {i}') status = post_post(post_title, post_category, post_body, post_image, i) # time.sleep(30) i += 1 if status: print('Post created successfully') return True else: print('Failed to create post') return False except Exception as e: print('An error occurred:', str(e)) return False if __name__ == '__main__': data = { "status": "success", "Astrophysics": { "2412.16344": { "id": "2412.16344", "doi": "https://doi.org/10.48550/arXiv.2412.16344", "title": "On the Interplay of Constraints from $B_s$, $D$, and $K$ Meson Mixing in $Z^\prime$ Models with Implications for $b\to s ν\barν$ Transitions", "category": "Astrophysics", "citation": "Grant, C. E., Bautz, M. W., Miller, E. D., Foster, R. F., LaMarr, B., Malonis, A., Prigozhin, G., Schneider, B., Leitz, C., & Falcone, A. D. (2024). Focal Plane of the Arcus Probe X-Ray Spectrograph. ArXiv. https://doi.org/10.48550/ARXIV.2412.16344", "summary": "## Summary\nThe Arcus Probe mission concept provides high-resolution soft X-ray and UV spectroscopy to study the universe. The X-ray Spectrograph (XRS) uses two CCD focal planes to detect and record X-ray photons. Laboratory performance results meet observatory requirements.\n\n## Highlights\n- The Arcus Probe mission concept explores the formation and evolution of clusters, galaxies, and stars.\n- The XRS instrument includes four parallel optical channels and two detector focal plane arrays.\n- The CCDs are designed and manufactured by MIT Lincoln Laboratory (MIT/LL).\n- The XRS focal plane utilizes high heritage MIT/LL CCDs with proven technologies.\n- Laboratory testing confirms CCID-94 performance meets required spectral resolution and readout noise.\n- The Arcus mission includes two co-aligned instruments working simultaneously.\n- The XRS Instrument Control Unit (XICU) controls the activities of the XRS.\n\n## Key Insights\n- The Arcus Probe mission concept provides a significant improvement in sensitivity and resolution over previous missions, enabling breakthrough science in understanding the universe.\n- The XRS instrument's design, including the use of two CCD focal planes and four parallel optical channels, allows for high-resolution spectroscopy and efficient detection of X-ray photons.\n- The CCDs used in the XRS instrument are designed and manufactured by MIT Lincoln Laboratory (MIT/LL), which has a proven track record of producing high-quality CCDs for space missions.\n- The laboratory performance results of the CCID-94 device demonstrate that it meets the required spectral resolution and readout noise for the Arcus mission, indicating that the instrument is capable of achieving its scientific goals.\n- The XRS Instrument Control Unit (XICU) plays a crucial role in controlling the activities of the XRS, including gathering and storing data, and processing event recognition.\n- The Arcus mission's use of two co-aligned instruments working simultaneously allows for a wide range of scientific investigations, including the study of time-domain science and the physics of time-dependent phenomena.\n- The high heritage MIT/LL CCDs used in the XRS focal plane provide a reliable and efficient means of detecting X-ray photons, enabling the instrument to achieve its scientific goals.", "mindmap": "## Arcus Probe Mission Concept\n- Explores formation and evolution of clusters, galaxies, stars\n- High-resolution soft X-ray and UV spectroscopy\n- Agile response capability for time-domain science\n\n## X-Ray Spectrograph (XRS) Instrument\n- Two nearly identical CCD focal planes\n- Detects and records X-ray photons from dispersed spectra\n- Zero-order of critical angle transmission gratings\n\n## XRS Focal Plane Characteristics\n- Frametransfer X-ray CCDs\n- 8-CCD array per Detector Assembly\n- FWHM < 70 eV @ 0.5 keV\n- System read noise ≤ 4 e- RMS @ 625 kpixels/sec\n\n## Detector Assembly\n- Eight CCDs in a linear array\n- Tilted to match curved focal surface\n- Gaps minimized between CCDs\n- Alignment optimized with XRS optics\n\n## Detector Electronics\n- Programmable analog clock waveforms and biases\n- Low-noise analog signal processing and digitization\n- 1 second frame time for negligible pileup\n\n## XRS Instrument Control Unit (XICU)\n- Controls XRS activities and data transfer\n- Event Recognition Processor (ERP) extracts X-ray events\n- Reduces data rate by many orders of magnitude\n\n## CCD X-Ray Performance\n- Measured readout noise 2-3 e- RMS\n- Spectral resolution meets Arcus requirements\n- FWHM < 70 eV at 0.5 keV\n\n## CCID-94 Characteristics\n- Back-illuminated frame-transfer CCDs\n- 2048 × 1024 pixel imaging array\n- 24 × 24 µm image area pixel size\n- 50 µm detector thickness\n\n## Contamination Blocking Filter (CBF)\n- Protects detectors from molecular contamination\n- 45 nm polyimide + 30 nm Al\n- Maintained above +20°C by heater control\n\n## Optical Blocking Filter (OBF)\n- Attenuates visible/IR stray light\n- 40 nm Al on-chip filter\n- Works in conjunction with CBF" } } } if data['status'] != 'success': print('Failed to fetch data') else: for category, catdata in data.items(): if category != 'status': for paper_id, paperdata in catdata.items(): title = paperdata['title'] category = paperdata['category'] summary = paperdata['summary'] mindmap = paperdata['mindmap'] citation = paperdata['citation'] access_key = access_key post_blog(title, category, summary, mindmap, citation, access_key)