prithivMLmods commited on
Commit
e86a765
·
verified ·
1 Parent(s): d10d780

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +216 -166
app.py CHANGED
@@ -1,30 +1,27 @@
1
- import os
2
- import random
3
- import uuid
4
- import json
5
- import time
6
- import re
7
- from threading import Thread
8
- from datetime import datetime, timedelta
9
-
10
  import gradio as gr
 
 
 
 
 
11
  import torch
12
- import numpy as np
13
- from PIL import Image
 
 
14
  import cv2
15
- from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
16
- from huggingface_hub import hf_hub_download
 
 
17
 
18
- # -----------------------------------------------------------------------------
19
- # Constants & Device Setup
20
- # -----------------------------------------------------------------------------
21
- MAX_MAX_NEW_TOKENS = 2048
22
- DEFAULT_MAX_NEW_TOKENS = 1024
23
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
24
 
25
- # -----------------------------------------------------------------------------
26
  # Helper Functions
27
- # -----------------------------------------------------------------------------
 
28
  def progress_bar_html(label: str) -> str:
29
  return f'''
30
  <div style="display: flex; align-items: center;">
@@ -41,165 +38,218 @@ def progress_bar_html(label: str) -> str:
41
  </style>
42
  '''
43
 
44
- def load_system_prompt(repo_id: str, filename: str) -> str:
45
- """
46
- Download and load a system prompt template from the given Hugging Face repo.
47
- The template may include placeholders (e.g. {name}, {today}, {yesterday}) that get formatted.
48
- """
49
- file_path = hf_hub_download(repo_id=repo_id, filename=filename)
50
- with open(file_path, "r") as file:
51
- system_prompt = file.read()
52
- today = datetime.today().strftime("%Y-%m-%d")
53
- yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
54
- model_name = repo_id.split("/")[-1]
55
- return system_prompt.format(name=model_name, today=today, yesterday=yesterday)
56
-
57
- def downsample_video(video_path: str):
58
- """
59
- Extracts 10 evenly spaced frames from the video.
60
- Returns a list of tuples (PIL.Image, timestamp_in_seconds).
61
- """
62
  vidcap = cv2.VideoCapture(video_path)
63
  total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
64
  fps = vidcap.get(cv2.CAP_PROP_FPS)
65
  frames = []
66
- if total_frames > 0 and fps > 0:
67
- frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
68
- for i in frame_indices:
69
- vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
70
- success, image = vidcap.read()
71
- if success:
72
- image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
73
- pil_image = Image.fromarray(image)
74
- timestamp = round(i / fps, 2)
75
- frames.append((pil_image, timestamp))
 
 
 
 
76
  vidcap.release()
77
  return frames
78
 
79
- def build_prompt(chat_history, current_input_text, video_frames=None, image_files=None):
80
- """
81
- Build a conversation prompt string.
82
- The system prompt is added first, then previous chat history, and finally the current input.
83
- If video_frames or image_files are provided, a note is added in the prompt.
84
- """
85
- prompt = f"System: {SYSTEM_PROMPT}\n"
86
- # Append chat history (if any)
87
- for msg in chat_history:
88
- role = msg.get("role", "").capitalize()
89
- content = msg.get("content", "")
90
- prompt += f"{role}: {content}\n"
91
- prompt += f"User: {current_input_text}\n"
92
- if video_frames:
93
- for _, timestamp in video_frames:
94
- prompt += f"[Video Frame at {timestamp} sec]\n"
95
- if image_files:
96
- for _ in image_files:
97
- prompt += "[Image Input]\n"
98
- prompt += "Assistant: "
99
- return prompt
100
-
101
- # -----------------------------------------------------------------------------
102
- # Load Mistral Model & System Prompt
103
- # -----------------------------------------------------------------------------
104
- MODEL_ID = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
105
- SYSTEM_PROMPT = load_system_prompt(MODEL_ID, "SYSTEM_PROMPT.txt")
106
-
107
- tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
108
- model = AutoModelForCausalLM.from_pretrained(
109
- MODEL_ID,
110
- torch_dtype=torch.float16,
111
- device_map="auto",
112
- trust_remote_code=True
113
- ).to(device)
114
- model.eval()
115
-
116
- # -----------------------------------------------------------------------------
117
- # Main Generation Function
118
- # -----------------------------------------------------------------------------
119
- def generate(
120
- input_dict: dict,
121
- chat_history: list,
122
- max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
123
- temperature: float = 0.6,
124
- top_p: float = 0.9,
125
- top_k: int = 50,
126
- repetition_penalty: float = 1.2,
127
- ):
128
- text = input_dict.get("text", "")
129
  files = input_dict.get("files", [])
130
 
131
- # Separate video files from images based on file extension.
132
  video_extensions = (".mp4", ".mov", ".avi", ".mkv", ".webm")
133
- video_files = [f for f in files if str(f).lower().endswith(video_extensions)]
134
- image_files = [f for f in files if not str(f).lower().endswith(video_extensions)]
135
-
136
- video_frames = None
137
- if video_files:
138
- # Process the first video file.
139
- video_path = video_files[0]
140
- video_frames = downsample_video(video_path)
141
-
142
- # Build the full prompt from the system prompt, chat history, current text, and file inputs.
143
- prompt = build_prompt(chat_history, text, video_frames, image_files)
144
-
145
- # Tokenize the prompt.
146
- inputs = tokenizer(prompt, return_tensors="pt").to(device)
147
-
148
- # Set up a streamer for incremental output.
149
- streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=20.0)
150
-
151
- generation_kwargs = {
152
- "input_ids": inputs["input_ids"],
153
- "max_new_tokens": max_new_tokens,
154
- "do_sample": True,
155
- "temperature": temperature,
156
- "top_p": top_p,
157
- "top_k": top_k,
158
- "repetition_penalty": repetition_penalty,
159
- "streamer": streamer,
160
- }
161
-
162
- # Launch generation in a separate thread.
163
- thread = Thread(target=model.generate, kwargs=generation_kwargs)
164
- thread.start()
165
-
166
- buffer = ""
167
- yield progress_bar_html("Processing with Mistral")
168
- for new_text in streamer:
169
- buffer += new_text
170
- time.sleep(0.01)
171
- yield buffer
172
-
173
- # -----------------------------------------------------------------------------
174
- # Gradio Interface
175
- # -----------------------------------------------------------------------------
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
176
  demo = gr.ChatInterface(
177
- fn=generate,
178
- additional_inputs=[
179
- gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
180
- gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
181
- gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
182
- gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
183
- gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
184
- ],
185
- examples=[
186
- [{"text": "Describe the content of the video.", "files": ["examples/sample_video.mp4"]}],
187
- [{"text": "Explain what is in this image.", "files": ["examples/sample_image.jpg"]}],
188
- ["Tell me a fun fact about space."],
189
- ],
190
- cache_examples=False,
191
- type="messages",
192
- description="# **Mistral Chatbot with Video Inference**\nA chatbot built with Mistral (via Transformers) that supports text, image, and video (frame extraction) inputs.",
193
- fill_height=True,
194
- textbox=gr.MultimodalTextbox(
195
- label="Query Input",
196
- file_types=["image", "video"],
197
- file_count="multiple",
198
- placeholder="Type your message here. Optionally attach images or video."
199
  ),
 
 
200
  stop_btn="Stop Generation",
201
  multimodal=True,
 
202
  )
203
 
204
  if __name__ == "__main__":
205
- demo.queue(max_size=20).launch(share=True)
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer
3
+ from transformers.image_utils import load_image
4
+ from threading import Thread
5
+ import re
6
+ import time
7
  import torch
8
+ import spaces
9
+ import ast
10
+ import html
11
+ import random
12
  import cv2
13
+ import numpy as np
14
+ import uuid
15
+
16
+ from PIL import Image, ImageOps
17
 
18
+ from docling_core.types.doc import DoclingDocument
19
+ from docling_core.types.doc.document import DocTagsDocument
 
 
 
 
20
 
21
+ # ---------------------------
22
  # Helper Functions
23
+ # ---------------------------
24
+
25
  def progress_bar_html(label: str) -> str:
26
  return f'''
27
  <div style="display: flex; align-items: center;">
 
38
  </style>
39
  '''
40
 
41
+ def downsample_video(video_path, num_frames=10):
42
+ """Downsamples a video to a fixed number of evenly spaced frames."""
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  vidcap = cv2.VideoCapture(video_path)
44
  total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
45
  fps = vidcap.get(cv2.CAP_PROP_FPS)
46
  frames = []
47
+ if total_frames <= 0 or fps <= 0:
48
+ vidcap.release()
49
+ return frames
50
+ # Get indices for num_frames evenly spaced frames.
51
+ frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
52
+ for i in frame_indices:
53
+ vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
54
+ success, image = vidcap.read()
55
+ if success:
56
+ # Convert from BGR (OpenCV) to RGB (PIL) and then to PIL Image.
57
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
58
+ pil_image = Image.fromarray(image)
59
+ timestamp = round(i / fps, 2)
60
+ frames.append((pil_image, timestamp))
61
  vidcap.release()
62
  return frames
63
 
64
+ def add_random_padding(image, min_percent=0.1, max_percent=0.10):
65
+ image = image.convert("RGB")
66
+ width, height = image.size
67
+ pad_w_percent = random.uniform(min_percent, max_percent)
68
+ pad_h_percent = random.uniform(min_percent, max_percent)
69
+ pad_w = int(width * pad_w_percent)
70
+ pad_h = int(height * pad_h_percent)
71
+ corner_pixel = image.getpixel((0, 0)) # Top-left corner for padding color
72
+ padded_image = ImageOps.expand(image, border=(pad_w, pad_h, pad_w, pad_h), fill=corner_pixel)
73
+ return padded_image
74
+
75
+ def normalize_values(text, target_max=500):
76
+ def normalize_list(values):
77
+ max_value = max(values) if values else 1
78
+ return [round((v / max_value) * target_max) for v in values]
79
+
80
+ def process_match(match):
81
+ num_list = ast.literal_eval(match.group(0))
82
+ normalized = normalize_list(num_list)
83
+ return "".join([f"<loc_{num}>" for num in normalized])
84
+
85
+ pattern = r"\[([\d\.\s,]+)\]"
86
+ normalized_text = re.sub(pattern, process_match, text)
87
+ return normalized_text
88
+
89
+ # ---------------------------
90
+ # Model & Processor Setup
91
+ # ---------------------------
92
+ processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview")
93
+ model = AutoModelForVision2Seq.from_pretrained(
94
+ "ds4sd/SmolDocling-256M-preview",
95
+ torch_dtype=torch.bfloat16,
96
+ ).to("cuda")
97
+
98
+ # ---------------------------
99
+ # Main Inference Function
100
+ # ---------------------------
101
+ @spaces.GPU
102
+ def model_inference(input_dict, history):
103
+ text = input_dict["text"]
 
 
 
 
 
 
 
 
 
 
104
  files = input_dict.get("files", [])
105
 
106
+ # If there are files, check if any is a video
107
  video_extensions = (".mp4", ".mov", ".avi", ".mkv", ".webm")
108
+ if files and any(str(f).lower().endswith(video_extensions) for f in files):
109
+ # -------- Video Inference Branch --------
110
+ video_file = files[0] # Assume first file is a video
111
+ frames = downsample_video(video_file)
112
+ if not frames:
113
+ yield "Could not process video file."
114
+ return
115
+ images = [frame[0] for frame in frames]
116
+ timestamps = [frame[1] for frame in frames]
117
+ # Append frame timestamps to the query text.
118
+ text_with_timestamps = text + " " + " ".join([f"Frame at {ts} seconds." for ts in timestamps])
119
+ resulting_messages = [{
120
+ "role": "user",
121
+ "content": [{"type": "image"} for _ in range(len(images))] + [{"type": "text", "text": text_with_timestamps}]
122
+ }]
123
+ prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
124
+ inputs = processor(text=prompt, images=[images], return_tensors="pt").to("cuda")
125
+
126
+ yield progress_bar_html("Processing video with SmolDocling")
127
+ streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=False)
128
+ generation_args = dict(inputs, streamer=streamer, max_new_tokens=8192)
129
+ thread = Thread(target=model.generate, kwargs=generation_args)
130
+ thread.start()
131
+ buffer = ""
132
+ full_output = ""
133
+ for new_text in streamer:
134
+ full_output += new_text
135
+ buffer += html.escape(new_text)
136
+ yield buffer
137
+ cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
138
+ if cleaned_output:
139
+ doctag_output = cleaned_output
140
+ yield cleaned_output
141
+ if any(tag in doctag_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
142
+ doc = DoclingDocument(name="Document")
143
+ if "<chart>" in doctag_output:
144
+ doctag_output = doctag_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
145
+ doctag_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', doctag_output)
146
+ doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctag_output], images)
147
+ doc.load_from_doctags(doctags_doc)
148
+ yield f"**MD Output:**\n\n{doc.export_to_markdown()}"
149
+ return
150
+
151
+ elif files:
152
+ # -------- Image Inference Branch --------
153
+ if len(files) > 1:
154
+ if "OTSL" in text or "code" in text:
155
+ images = [add_random_padding(load_image(image)) for image in files]
156
+ else:
157
+ images = [load_image(image) for image in files]
158
+ elif len(files) == 1:
159
+ if "OTSL" in text or "code" in text:
160
+ images = [add_random_padding(load_image(files[0]))]
161
+ else:
162
+ images = [load_image(files[0])]
163
+ resulting_messages = [{
164
+ "role": "user",
165
+ "content": [{"type": "image"} for _ in range(len(images))] + [{"type": "text", "text": text}]
166
+ }]
167
+ prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
168
+ inputs = processor(text=prompt, images=[images], return_tensors="pt").to("cuda")
169
+
170
+ yield progress_bar_html("Processing with SmolDocling")
171
+ streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=False)
172
+ generation_args = dict(inputs, streamer=streamer, max_new_tokens=8192)
173
+ thread = Thread(target=model.generate, kwargs=generation_args)
174
+ thread.start()
175
+ yield "..."
176
+ buffer = ""
177
+ full_output = ""
178
+ for new_text in streamer:
179
+ full_output += new_text
180
+ buffer += html.escape(new_text)
181
+ yield buffer
182
+ cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
183
+ if cleaned_output:
184
+ doctag_output = cleaned_output
185
+ yield cleaned_output
186
+ if any(tag in doctag_output for tag in ["<doctag>", "<otsl>", "<code>", "<chart>", "<formula>"]):
187
+ doc = DoclingDocument(name="Document")
188
+ if "<chart>" in doctag_output:
189
+ doctag_output = doctag_output.replace("<chart>", "<otsl>").replace("</chart>", "</otsl>")
190
+ doctag_output = re.sub(r'(<loc_500>)(?!.*<loc_500>)<[^>]+>', r'\1', doctag_output)
191
+ doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctag_output], images)
192
+ doc.load_from_doctags(doctags_doc)
193
+ yield f"**MD Output:**\n\n{doc.export_to_markdown()}"
194
+ return
195
+
196
+ else:
197
+ # -------- Text-Only Inference Branch --------
198
+ if text == "":
199
+ gr.Error("Please input a query and optionally image(s).")
200
+ resulting_messages = [{
201
+ "role": "user",
202
+ "content": [{"type": "text", "text": text}]
203
+ }]
204
+ prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
205
+ inputs = processor(text=prompt, return_tensors="pt").to("cuda")
206
+ yield progress_bar_html("Processing text with SmolDocling")
207
+ streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=False)
208
+ generation_args = dict(inputs, streamer=streamer, max_new_tokens=8192)
209
+ thread = Thread(target=model.generate, kwargs=generation_args)
210
+ thread.start()
211
+ yield "..."
212
+ buffer = ""
213
+ full_output = ""
214
+ for new_text in streamer:
215
+ full_output += new_text
216
+ buffer += html.escape(new_text)
217
+ yield buffer
218
+ cleaned_output = full_output.replace("<end_of_utterance>", "").strip()
219
+ if cleaned_output:
220
+ yield cleaned_output
221
+ return
222
+
223
+ # ---------------------------
224
+ # Gradio Interface Setup
225
+ # ---------------------------
226
+ examples = [
227
+ [{"text": "Convert this page to docling.", "files": ["example_images/2d0fbcc50e88065a040a537b717620e964fb4453314b71d83f3ed3425addcef6.png"]}],
228
+ [{"text": "Convert this table to OTSL.", "files": ["example_images/image-2.jpg"]}],
229
+ [{"text": "Convert code to text.", "files": ["example_images/7666.jpg"]}],
230
+ [{"text": "Convert formula to latex.", "files": ["example_images/2433.jpg"]}],
231
+ [{"text": "Convert chart to OTSL.", "files": ["example_images/06236926002285.png"]}],
232
+ [{"text": "OCR the text in location [47, 531, 167, 565]", "files": ["example_images/s2w_example.png"]}],
233
+ [{"text": "Extract all section header elements on the page.", "files": ["example_images/paper_3.png"]}],
234
+ [{"text": "Identify element at location [123, 413, 1059, 1061]", "files": ["example_images/redhat.png"]}],
235
+ [{"text": "Convert this page to docling.", "files": ["example_images/gazette_de_france.jpg"]}],
236
+ # Example video file (if available)
237
+ [{"text": "Describe the events in this video.", "files": ["example_videos/sample_video.mp4"]}],
238
+ ]
239
+
240
  demo = gr.ChatInterface(
241
+ fn=model_inference,
242
+ title="SmolDocling-256M: Ultra-compact VLM for Document Conversion 💫",
243
+ description=(
244
+ "Play with [ds4sd/SmolDocling-256M-preview](https://huggingface.co/ds4sd/SmolDocling-256M-preview) in this demo. "
245
+ "Upload an image, video, and text query or try one of the examples. Each chat starts a new conversation."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
246
  ),
247
+ examples=examples,
248
+ textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple"),
249
  stop_btn="Stop Generation",
250
  multimodal=True,
251
+ cache_examples=False
252
  )
253
 
254
  if __name__ == "__main__":
255
+ demo.launch(debug=True)