prithivMLmods commited on
Commit
c4fcb59
·
verified ·
1 Parent(s): 91f05e0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -3
app.py CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
2
  from gender_classification import gender_classification
3
  from emotion_classification import emotion_classification
4
  from dog_breed import dog_breed_classification
 
5
 
6
  # Functions to update the model state when a button is clicked.
7
  def select_gender():
@@ -13,6 +14,9 @@ def select_emotion():
13
  def select_dog_breed():
14
  return "dog breed"
15
 
 
 
 
16
  # Main classification function that calls the appropriate model based on selection.
17
  def classify(image, model_name):
18
  if model_name == "gender":
@@ -21,18 +25,21 @@ def classify(image, model_name):
21
  return emotion_classification(image)
22
  elif model_name == "dog breed":
23
  return dog_breed_classification(image)
 
 
24
  else:
25
  return {"Error": "No model selected"}
26
 
27
  with gr.Blocks() as demo:
28
  # Sidebar with title and model selection buttons.
29
  with gr.Sidebar():
30
- gr.Markdown("# SigLIP2 224")
31
  with gr.Row():
32
  gender_btn = gr.Button("Gender Classification")
33
  emotion_btn = gr.Button("Emotion Classification")
34
  dog_breed_btn = gr.Button("Dog Breed Classification")
35
-
 
36
  # State to hold the current model choice.
37
  selected_model = gr.State("gender")
38
 
@@ -40,6 +47,7 @@ with gr.Blocks() as demo:
40
  gender_btn.click(fn=select_gender, inputs=[], outputs=selected_model)
41
  emotion_btn.click(fn=select_emotion, inputs=[], outputs=selected_model)
42
  dog_breed_btn.click(fn=select_dog_breed, inputs=[], outputs=selected_model)
 
43
 
44
  gr.Markdown("### Current Model:")
45
  model_display = gr.Textbox(value="gender", interactive=False)
@@ -49,7 +57,7 @@ with gr.Blocks() as demo:
49
  # Main interface: image input, analyze button, and prediction output.
50
  with gr.Column():
51
  image_input = gr.Image(type="numpy", label="Upload Image")
52
- analyze_btn = gr.Button("Classify / Predict")
53
  output_label = gr.Label(label="Prediction Scores")
54
 
55
  # When the "Analyze" button is clicked, use the selected model to classify the image.
 
2
  from gender_classification import gender_classification
3
  from emotion_classification import emotion_classification
4
  from dog_breed import dog_breed_classification
5
+ from deepfake_vs_real import deepfake_classification
6
 
7
  # Functions to update the model state when a button is clicked.
8
  def select_gender():
 
14
  def select_dog_breed():
15
  return "dog breed"
16
 
17
+ def select_deepfake():
18
+ return "deepfake"
19
+
20
  # Main classification function that calls the appropriate model based on selection.
21
  def classify(image, model_name):
22
  if model_name == "gender":
 
25
  return emotion_classification(image)
26
  elif model_name == "dog breed":
27
  return dog_breed_classification(image)
28
+ elif model_name == "deepfake":
29
+ return deepfake_classification(image)
30
  else:
31
  return {"Error": "No model selected"}
32
 
33
  with gr.Blocks() as demo:
34
  # Sidebar with title and model selection buttons.
35
  with gr.Sidebar():
36
+ gr.Markdown("# SigLIP2 Classification")
37
  with gr.Row():
38
  gender_btn = gr.Button("Gender Classification")
39
  emotion_btn = gr.Button("Emotion Classification")
40
  dog_breed_btn = gr.Button("Dog Breed Classification")
41
+ deepfake_btn = gr.Button("Deepfake vs Real")
42
+
43
  # State to hold the current model choice.
44
  selected_model = gr.State("gender")
45
 
 
47
  gender_btn.click(fn=select_gender, inputs=[], outputs=selected_model)
48
  emotion_btn.click(fn=select_emotion, inputs=[], outputs=selected_model)
49
  dog_breed_btn.click(fn=select_dog_breed, inputs=[], outputs=selected_model)
50
+ deepfake_btn.click(fn=select_deepfake, inputs=[], outputs=selected_model)
51
 
52
  gr.Markdown("### Current Model:")
53
  model_display = gr.Textbox(value="gender", interactive=False)
 
57
  # Main interface: image input, analyze button, and prediction output.
58
  with gr.Column():
59
  image_input = gr.Image(type="numpy", label="Upload Image")
60
+ analyze_btn = gr.Button("Analyze")
61
  output_label = gr.Label(label="Prediction Scores")
62
 
63
  # When the "Analyze" button is clicked, use the selected model to classify the image.