Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,138 +1,164 @@
|
|
1 |
-
import os
|
2 |
-
import time
|
3 |
-
import spaces
|
4 |
-
import json
|
5 |
-
import subprocess
|
6 |
-
from llama_cpp import Llama
|
7 |
-
from llama_cpp_agent import LlamaCppAgent, MessagesFormatterType
|
8 |
-
from llama_cpp_agent.providers import LlamaCppPythonProvider
|
9 |
-
from llama_cpp_agent.chat_history import BasicChatHistory
|
10 |
-
from llama_cpp_agent.chat_history.messages import Roles
|
11 |
import gradio as gr
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
)
|
32 |
-
|
33 |
-
|
34 |
-
print(f"Error downloading model: {e}")
|
35 |
-
exit(1)
|
36 |
-
|
37 |
-
# Ensure model is fully downloaded before using
|
38 |
-
while not os.path.exists(MODEL_PATH):
|
39 |
-
print("Waiting for model to be available...")
|
40 |
-
time.sleep(5)
|
41 |
-
|
42 |
-
# Function to handle AI responses
|
43 |
-
@spaces.GPU
|
44 |
-
def respond(
|
45 |
-
message,
|
46 |
-
history: list[tuple[str, str]],
|
47 |
-
model,
|
48 |
-
system_message,
|
49 |
-
max_tokens,
|
50 |
-
temperature,
|
51 |
-
top_p,
|
52 |
-
top_k,
|
53 |
-
repeat_penalty,
|
54 |
-
):
|
55 |
-
chat_template = MessagesFormatterType.GEMMA_2
|
56 |
-
|
57 |
-
llm = Llama(
|
58 |
-
model_path=MODEL_PATH,
|
59 |
-
flash_attn=True,
|
60 |
-
n_gpu_layers=81,
|
61 |
-
n_batch=1024,
|
62 |
-
n_ctx=8192,
|
63 |
-
)
|
64 |
-
provider = LlamaCppPythonProvider(llm)
|
65 |
-
|
66 |
-
agent = LlamaCppAgent(
|
67 |
-
provider,
|
68 |
-
system_prompt=f"{system_message}",
|
69 |
-
predefined_messages_formatter_type=chat_template,
|
70 |
-
debug_output=True
|
71 |
-
)
|
72 |
-
|
73 |
-
settings = provider.get_provider_default_settings()
|
74 |
-
settings.temperature = temperature
|
75 |
-
settings.top_k = top_k
|
76 |
-
settings.top_p = top_p
|
77 |
-
settings.max_tokens = max_tokens
|
78 |
-
settings.repeat_penalty = repeat_penalty
|
79 |
-
settings.stream = True
|
80 |
-
|
81 |
-
messages = BasicChatHistory()
|
82 |
-
|
83 |
-
for msn in history:
|
84 |
-
user = {'role': Roles.user, 'content': msn[0]}
|
85 |
-
assistant = {'role': Roles.assistant, 'content': msn[1]}
|
86 |
-
messages.add_message(user)
|
87 |
-
messages.add_message(assistant)
|
88 |
-
|
89 |
-
stream = agent.get_chat_response(
|
90 |
-
message,
|
91 |
-
llm_sampling_settings=settings,
|
92 |
-
chat_history=messages,
|
93 |
-
returns_streaming_generator=True,
|
94 |
-
print_output=False
|
95 |
-
)
|
96 |
-
|
97 |
-
outputs = ""
|
98 |
-
for output in stream:
|
99 |
-
outputs += output
|
100 |
-
yield outputs
|
101 |
-
|
102 |
-
# Function to create Gradio interface
|
103 |
-
def create_interface(model_name, description):
|
104 |
-
return gr.ChatInterface(
|
105 |
-
respond,
|
106 |
-
additional_inputs=[
|
107 |
-
gr.Textbox(value=model_name, label="Model", interactive=False),
|
108 |
-
gr.Textbox(
|
109 |
-
value="You are a helpful assistant. You should think step-by-step. You should answer all questions by prioritizing the principle of openness",
|
110 |
-
label="System message"
|
111 |
-
),
|
112 |
-
gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens"),
|
113 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
114 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
115 |
-
gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k"),
|
116 |
-
gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty"),
|
117 |
-
],
|
118 |
-
retry_btn="Retry",
|
119 |
-
undo_btn="Undo",
|
120 |
-
clear_btn="Clear",
|
121 |
-
submit_btn="Send",
|
122 |
-
title=f"{model_name}",
|
123 |
-
description=description,
|
124 |
-
chatbot=gr.Chatbot(scale=1, likeable=False, show_copy_button=True)
|
125 |
-
)
|
126 |
-
|
127 |
-
# Set interface description
|
128 |
-
description = """<p align="center">Viper-Coder-32B-Elite13-GGUF</p>"""
|
129 |
-
interface = create_interface(MODEL_REPO, description)
|
130 |
-
|
131 |
-
# Create Gradio Blocks app
|
132 |
-
demo = gr.Blocks()
|
133 |
-
|
134 |
-
with demo:
|
135 |
-
interface.render()
|
136 |
|
137 |
if __name__ == "__main__":
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import random
|
7 |
+
import time
|
8 |
+
from PIL import Image
|
9 |
+
from threading import Thread
|
10 |
+
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration, TextIteratorStreamer
|
11 |
+
from transformers.image_utils import load_image
|
12 |
+
|
13 |
+
#####################################
|
14 |
+
# 1. Load Qwen2.5-VL Model & Processor
|
15 |
+
#####################################
|
16 |
+
MODEL_ID = "Qwen/Qwen2.5-VL-7B-Instruct" # or "Qwen/Qwen2.5-VL-3B-Instruct"
|
17 |
+
|
18 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
19 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
20 |
+
MODEL_ID,
|
21 |
+
trust_remote_code=True,
|
22 |
+
torch_dtype=torch.bfloat16
|
23 |
+
).to("cuda")
|
24 |
+
model.eval()
|
25 |
+
|
26 |
+
#####################################
|
27 |
+
# 2. Helper Function: Downsample Video
|
28 |
+
#####################################
|
29 |
+
def downsample_video(video_path, num_frames=10):
|
30 |
+
"""
|
31 |
+
Downsamples the video file to `num_frames` evenly spaced frames.
|
32 |
+
Each frame is converted to a PIL Image along with its timestamp.
|
33 |
+
"""
|
34 |
+
vidcap = cv2.VideoCapture(video_path)
|
35 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
36 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
37 |
+
frames = []
|
38 |
+
if total_frames <= 0 or fps <= 0:
|
39 |
+
vidcap.release()
|
40 |
+
return frames
|
41 |
+
|
42 |
+
frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
|
43 |
+
for i in frame_indices:
|
44 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
45 |
+
success, image = vidcap.read()
|
46 |
+
if success:
|
47 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
48 |
+
pil_image = Image.fromarray(image)
|
49 |
+
timestamp = round(i / fps, 2)
|
50 |
+
frames.append((pil_image, timestamp))
|
51 |
+
vidcap.release()
|
52 |
+
return frames
|
53 |
+
|
54 |
+
#####################################
|
55 |
+
# 3. The Inference Function
|
56 |
+
#####################################
|
57 |
+
def video_inference(video_file, duration):
|
58 |
+
"""
|
59 |
+
- Takes a recorded video file and a chosen duration (string).
|
60 |
+
- Downsamples the video, passes frames to Qwen2.5-VL for inference.
|
61 |
+
- Returns model-generated text + a dummy bar chart as example analytics.
|
62 |
+
"""
|
63 |
+
if video_file is None:
|
64 |
+
return "No video provided.", None
|
65 |
+
|
66 |
+
# 3.1: Downsample the recorded video
|
67 |
+
frames = downsample_video(video_file)
|
68 |
+
if not frames:
|
69 |
+
return "Could not read frames from video.", None
|
70 |
+
|
71 |
+
# 3.2: Construct Qwen2.5-VL prompt
|
72 |
+
# We'll do a simple prompt: "Please describe what's happening in this video."
|
73 |
+
messages = [
|
74 |
+
{
|
75 |
+
"role": "user",
|
76 |
+
"content": [{"type": "text", "text": "Please describe what's happening in this video."}]
|
77 |
+
}
|
78 |
+
]
|
79 |
+
|
80 |
+
# Add frames (with timestamp) to the messages
|
81 |
+
for (image, ts) in frames:
|
82 |
+
messages[0]["content"].append({"type": "text", "text": f"Frame at {ts} seconds:"})
|
83 |
+
messages[0]["content"].append({"type": "image", "image": image})
|
84 |
+
|
85 |
+
# Prepare final prompt for the model
|
86 |
+
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
87 |
+
|
88 |
+
# Qwen requires images in the same order. We'll just collect them:
|
89 |
+
frame_images = [img for (img, _) in frames]
|
90 |
+
|
91 |
+
inputs = processor(
|
92 |
+
text=[prompt],
|
93 |
+
images=frame_images,
|
94 |
+
return_tensors="pt",
|
95 |
+
padding=True
|
96 |
+
).to("cuda")
|
97 |
+
|
98 |
+
# 3.3: Generate text output
|
99 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
100 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512)
|
101 |
+
|
102 |
+
# We'll run generation in a thread to simulate streaming.
|
103 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
104 |
+
thread.start()
|
105 |
+
|
106 |
+
# Collect the streamed text
|
107 |
+
generated_text = ""
|
108 |
+
for new_text in streamer:
|
109 |
+
generated_text += new_text
|
110 |
+
# Sleep briefly to yield control
|
111 |
+
time.sleep(0.01)
|
112 |
+
|
113 |
+
# 3.4: Dummy bar chart for demonstration
|
114 |
+
fig, ax = plt.subplots()
|
115 |
+
categories = ["Category A", "Category B", "Category C"]
|
116 |
+
values = [random.randint(1, 10) for _ in categories]
|
117 |
+
ax.bar(categories, values, color=["#4B0082", "#9370DB", "#4B0082"])
|
118 |
+
ax.set_title("Example Analytics Chart")
|
119 |
+
ax.set_ylabel("Value")
|
120 |
+
ax.set_xlabel("Category")
|
121 |
+
|
122 |
+
# Return text + figure
|
123 |
+
return generated_text, fig
|
124 |
+
|
125 |
+
#####################################
|
126 |
+
# 4. Build a Professional Gradio UI
|
127 |
+
#####################################
|
128 |
+
def build_app():
|
129 |
+
with gr.Blocks() as demo:
|
130 |
+
gr.Markdown("""
|
131 |
+
# **Qwen2.5-VL-7B-Instruct Live Video Analysis**
|
132 |
+
Record your webcam for a chosen duration, then click **Stop** to finalize.
|
133 |
+
After that, click **Analyze** to run Qwen2.5-VL and see textual + chart outputs.
|
134 |
+
""")
|
135 |
+
|
136 |
+
with gr.Row():
|
137 |
+
with gr.Column():
|
138 |
+
duration = gr.Radio(
|
139 |
+
choices=["5", "10", "20", "30"],
|
140 |
+
value="5",
|
141 |
+
label="Suggested Recording Duration (seconds)",
|
142 |
+
info="Select how long you plan to record before pressing Stop."
|
143 |
+
)
|
144 |
+
video = gr.Video(
|
145 |
+
source="webcam",
|
146 |
+
format="mp4",
|
147 |
+
label="Webcam Recording (press the Record button, then Stop)"
|
148 |
+
)
|
149 |
+
analyze_btn = gr.Button("Analyze", variant="primary")
|
150 |
+
with gr.Column():
|
151 |
+
output_text = gr.Textbox(label="Model Output")
|
152 |
+
output_plot = gr.Plot(label="Analytics Chart")
|
153 |
+
|
154 |
+
analyze_btn.click(
|
155 |
+
fn=video_inference,
|
156 |
+
inputs=[video, duration],
|
157 |
+
outputs=[output_text, output_plot]
|
158 |
)
|
159 |
+
|
160 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
if __name__ == "__main__":
|
163 |
+
app = build_app()
|
164 |
+
app.launch(debug=True)
|