prithivMLmods commited on
Commit
4853a1d
·
verified ·
1 Parent(s): 22c9899

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -8
app.py CHANGED
@@ -12,6 +12,7 @@ from indian_western_food_classify import food_classification
12
  from bird_species import bird_classification
13
  from alphabet_sign_language_detection import sign_language_classification
14
  from rice_leaf_disease import classify_leaf_disease
 
15
 
16
  # Main classification function that calls the appropriate model based on selection.
17
  def classify(image, model_name):
@@ -41,6 +42,8 @@ def classify(image, model_name):
41
  return classify_leaf_disease(image)
42
  elif model_name == "sign language":
43
  return sign_language_classification(image)
 
 
44
  else:
45
  return {"Error": "No model selected"}
46
 
@@ -50,7 +53,7 @@ def select_model(model_name):
50
  "gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary",
51
  "gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary",
52
  "fashion_mnist": "secondary", "food": "secondary", "bird": "secondary", "leaf disease": "secondary",
53
- "sign language": "secondary"
54
  }
55
  model_variants[model_name] = "primary"
56
  return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants))
@@ -67,19 +70,20 @@ with gr.Blocks() as demo:
67
  gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary")
68
  waste_btn = gr.Button("Waste Classification", variant="secondary")
69
  mnist_btn = gr.Button("Digit Classify (0-9)", variant="secondary")
70
- fashion_mnist_btn = gr.Button("Fashion MNIST", variant="secondary")
71
- food_btn = gr.Button("Indian/Western Food", variant="secondary")
72
- bird_btn = gr.Button("Bird Species", variant="secondary")
73
- leaf_disease_btn = gr.Button("Rice Leaf Disease", variant="secondary")
74
- sign_language_btn = gr.Button("Sign Language", variant="secondary")
 
75
 
76
  selected_model = gr.State("age")
77
  gr.Markdown("### Current Model:")
78
  model_display = gr.Textbox(value="age", interactive=False)
79
  selected_model.change(lambda m: m, selected_model, model_display)
80
 
81
- buttons = [gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn, mnist_btn, fashion_mnist_btn, food_btn, bird_btn, leaf_disease_btn, sign_language_btn]
82
- model_names = ["gender", "emotion", "dog breed", "deepfake", "gym workout", "waste", "age", "mnist", "fashion_mnist", "food", "bird", "leaf disease", "sign language"]
83
 
84
  for btn, name in zip(buttons, model_names):
85
  btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons)
 
12
  from bird_species import bird_classification
13
  from alphabet_sign_language_detection import sign_language_classification
14
  from rice_leaf_disease import classify_leaf_disease
15
+ from traffic_density import traffic_density_classification
16
 
17
  # Main classification function that calls the appropriate model based on selection.
18
  def classify(image, model_name):
 
42
  return classify_leaf_disease(image)
43
  elif model_name == "sign language":
44
  return sign_language_classification(image)
45
+ elif model_name == "traffic density":
46
+ return traffic_density_classification(image)
47
  else:
48
  return {"Error": "No model selected"}
49
 
 
53
  "gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary",
54
  "gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary",
55
  "fashion_mnist": "secondary", "food": "secondary", "bird": "secondary", "leaf disease": "secondary",
56
+ "sign language": "secondary", "traffic density": "secondary"
57
  }
58
  model_variants[model_name] = "primary"
59
  return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants))
 
70
  gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary")
71
  waste_btn = gr.Button("Waste Classification", variant="secondary")
72
  mnist_btn = gr.Button("Digit Classify (0-9)", variant="secondary")
73
+ fashion_mnist_btn = gr.Button("Fashion MNIST Classification", variant="secondary")
74
+ food_btn = gr.Button("Indian/Western Food Classification", variant="secondary")
75
+ bird_btn = gr.Button("Bird Species Classification", variant="secondary")
76
+ leaf_disease_btn = gr.Button("Rice Leaf Disease Classification", variant="secondary")
77
+ sign_language_btn = gr.Button("Sign Language Detection", variant="secondary")
78
+ traffic_density_btn = gr.Button("Traffic Density Classification", variant="secondary")
79
 
80
  selected_model = gr.State("age")
81
  gr.Markdown("### Current Model:")
82
  model_display = gr.Textbox(value="age", interactive=False)
83
  selected_model.change(lambda m: m, selected_model, model_display)
84
 
85
+ buttons = [gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn, mnist_btn, fashion_mnist_btn, food_btn, bird_btn, leaf_disease_btn, sign_language_btn, traffic_density_btn]
86
+ model_names = ["gender", "emotion", "dog breed", "deepfake", "gym workout", "waste", "age", "mnist", "fashion_mnist", "food", "bird", "leaf disease", "sign language", "traffic density"]
87
 
88
  for btn, name in zip(buttons, model_names):
89
  btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons)