Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -12,6 +12,7 @@ from indian_western_food_classify import food_classification
|
|
12 |
from bird_species import bird_classification
|
13 |
from alphabet_sign_language_detection import sign_language_classification
|
14 |
from rice_leaf_disease import classify_leaf_disease
|
|
|
15 |
|
16 |
# Main classification function that calls the appropriate model based on selection.
|
17 |
def classify(image, model_name):
|
@@ -41,6 +42,8 @@ def classify(image, model_name):
|
|
41 |
return classify_leaf_disease(image)
|
42 |
elif model_name == "sign language":
|
43 |
return sign_language_classification(image)
|
|
|
|
|
44 |
else:
|
45 |
return {"Error": "No model selected"}
|
46 |
|
@@ -50,7 +53,7 @@ def select_model(model_name):
|
|
50 |
"gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary",
|
51 |
"gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary",
|
52 |
"fashion_mnist": "secondary", "food": "secondary", "bird": "secondary", "leaf disease": "secondary",
|
53 |
-
"sign language": "secondary"
|
54 |
}
|
55 |
model_variants[model_name] = "primary"
|
56 |
return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants))
|
@@ -67,19 +70,20 @@ with gr.Blocks() as demo:
|
|
67 |
gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary")
|
68 |
waste_btn = gr.Button("Waste Classification", variant="secondary")
|
69 |
mnist_btn = gr.Button("Digit Classify (0-9)", variant="secondary")
|
70 |
-
fashion_mnist_btn = gr.Button("Fashion MNIST", variant="secondary")
|
71 |
-
food_btn = gr.Button("Indian/Western Food", variant="secondary")
|
72 |
-
bird_btn = gr.Button("Bird Species", variant="secondary")
|
73 |
-
leaf_disease_btn = gr.Button("Rice Leaf Disease", variant="secondary")
|
74 |
-
sign_language_btn = gr.Button("Sign Language", variant="secondary")
|
|
|
75 |
|
76 |
selected_model = gr.State("age")
|
77 |
gr.Markdown("### Current Model:")
|
78 |
model_display = gr.Textbox(value="age", interactive=False)
|
79 |
selected_model.change(lambda m: m, selected_model, model_display)
|
80 |
|
81 |
-
buttons = [gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn, mnist_btn, fashion_mnist_btn, food_btn, bird_btn, leaf_disease_btn, sign_language_btn]
|
82 |
-
model_names = ["gender", "emotion", "dog breed", "deepfake", "gym workout", "waste", "age", "mnist", "fashion_mnist", "food", "bird", "leaf disease", "sign language"]
|
83 |
|
84 |
for btn, name in zip(buttons, model_names):
|
85 |
btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons)
|
|
|
12 |
from bird_species import bird_classification
|
13 |
from alphabet_sign_language_detection import sign_language_classification
|
14 |
from rice_leaf_disease import classify_leaf_disease
|
15 |
+
from traffic_density import traffic_density_classification
|
16 |
|
17 |
# Main classification function that calls the appropriate model based on selection.
|
18 |
def classify(image, model_name):
|
|
|
42 |
return classify_leaf_disease(image)
|
43 |
elif model_name == "sign language":
|
44 |
return sign_language_classification(image)
|
45 |
+
elif model_name == "traffic density":
|
46 |
+
return traffic_density_classification(image)
|
47 |
else:
|
48 |
return {"Error": "No model selected"}
|
49 |
|
|
|
53 |
"gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary",
|
54 |
"gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary",
|
55 |
"fashion_mnist": "secondary", "food": "secondary", "bird": "secondary", "leaf disease": "secondary",
|
56 |
+
"sign language": "secondary", "traffic density": "secondary"
|
57 |
}
|
58 |
model_variants[model_name] = "primary"
|
59 |
return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants))
|
|
|
70 |
gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary")
|
71 |
waste_btn = gr.Button("Waste Classification", variant="secondary")
|
72 |
mnist_btn = gr.Button("Digit Classify (0-9)", variant="secondary")
|
73 |
+
fashion_mnist_btn = gr.Button("Fashion MNIST Classification", variant="secondary")
|
74 |
+
food_btn = gr.Button("Indian/Western Food Classification", variant="secondary")
|
75 |
+
bird_btn = gr.Button("Bird Species Classification", variant="secondary")
|
76 |
+
leaf_disease_btn = gr.Button("Rice Leaf Disease Classification", variant="secondary")
|
77 |
+
sign_language_btn = gr.Button("Sign Language Detection", variant="secondary")
|
78 |
+
traffic_density_btn = gr.Button("Traffic Density Classification", variant="secondary")
|
79 |
|
80 |
selected_model = gr.State("age")
|
81 |
gr.Markdown("### Current Model:")
|
82 |
model_display = gr.Textbox(value="age", interactive=False)
|
83 |
selected_model.change(lambda m: m, selected_model, model_display)
|
84 |
|
85 |
+
buttons = [gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn, mnist_btn, fashion_mnist_btn, food_btn, bird_btn, leaf_disease_btn, sign_language_btn, traffic_density_btn]
|
86 |
+
model_names = ["gender", "emotion", "dog breed", "deepfake", "gym workout", "waste", "age", "mnist", "fashion_mnist", "food", "bird", "leaf disease", "sign language", "traffic density"]
|
87 |
|
88 |
for btn, name in zip(buttons, model_names):
|
89 |
btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons)
|