Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import uuid | |
import json | |
import time | |
import asyncio | |
from threading import Thread | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
from PIL import Image | |
import cv2 | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
Qwen2VLForConditionalGeneration, | |
AutoProcessor, | |
) | |
from transformers.image_utils import load_image | |
# Additional imports for new TTS | |
from snac import SNAC | |
from huggingface_hub import snapshot_download | |
from dotenv import load_dotenv | |
load_dotenv() | |
# Set up device | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
tts_device = "cuda" if torch.cuda.is_available() else "cpu" # for SNAC and Orpheus TTS | |
# Load DeepHermes Llama (chat/LLM) model | |
hermes_model_id = "prithivMLmods/DeepHermes-3-Llama-3-3B-Preview-abliterated" | |
hermes_llm_tokenizer = AutoTokenizer.from_pretrained(hermes_model_id) | |
hermes_llm_model = AutoModelForCausalLM.from_pretrained( | |
hermes_model_id, | |
device_map="auto", | |
torch_dtype=torch.bfloat16, | |
) | |
hermes_llm_model.eval() | |
# Load Qwen2-VL processor and model for multimodal tasks (e.g. video processing) | |
MODEL_ID_QWEN = "prithivMLmods/Qwen2-VL-OCR2-2B-Instruct" | |
processor = AutoProcessor.from_pretrained(MODEL_ID_QWEN, trust_remote_code=True) | |
model_m = Qwen2VLForConditionalGeneration.from_pretrained( | |
MODEL_ID_QWEN, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 | |
).to("cuda").eval() | |
# Load Orpheus TTS model and SNAC for TTS synthesis | |
print("Loading SNAC model...") | |
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz") | |
snac_model = snac_model.to(tts_device) | |
tts_model_name = "canopylabs/orpheus-3b-0.1-ft" | |
# Download only model config and safetensors | |
snapshot_download( | |
repo_id=tts_model_name, | |
allow_patterns=[ | |
"config.json", | |
"*.safetensors", | |
"model.safetensors.index.json", | |
], | |
ignore_patterns=[ | |
"optimizer.pt", | |
"pytorch_model.bin", | |
"training_args.bin", | |
"scheduler.pt", | |
"tokenizer.json", | |
"tokenizer_config.json", | |
"special_tokens_map.json", | |
"vocab.json", | |
"merges.txt", | |
"tokenizer.*" | |
] | |
) | |
orpheus_tts_model = AutoModelForCausalLM.from_pretrained(tts_model_name, torch_dtype=torch.bfloat16) | |
orpheus_tts_model.to(tts_device) | |
orpheus_tts_tokenizer = AutoTokenizer.from_pretrained(tts_model_name) | |
print(f"Orpheus TTS model loaded to {tts_device}") | |
# Some global parameters for chat responses | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) | |
# (Image generation related code has been fully removed.) | |
MAX_SEED = np.iinfo(np.int32).max | |
# Utility functions | |
def save_image(img: Image.Image) -> str: | |
unique_name = str(uuid.uuid4()) + ".png" | |
img.save(unique_name) | |
return unique_name | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def progress_bar_html(label: str) -> str: | |
return f''' | |
<div style="display: flex; align-items: center;"> | |
<span style="margin-right: 10px; font-size: 14px;">{label}</span> | |
<div style="width: 110px; height: 5px; background-color: #FFA07A; border-radius: 2px; overflow: hidden;"> | |
<div style="width: 100%; height: 100%; background-color: #FF4500; animation: loading 1.5s linear infinite;"></div> | |
</div> | |
</div> | |
<style> | |
@keyframes loading {{ | |
0% {{ transform: translateX(-100%); }} | |
100% {{ transform: translateX(100%); }} | |
}} | |
</style> | |
''' | |
def downsample_video(video_path): | |
vidcap = cv2.VideoCapture(video_path) | |
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = vidcap.get(cv2.CAP_PROP_FPS) | |
frames = [] | |
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int) | |
for i in frame_indices: | |
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
success, image = vidcap.read() | |
if success: | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
pil_image = Image.fromarray(image) | |
timestamp = round(i / fps, 2) | |
frames.append((pil_image, timestamp)) | |
vidcap.release() | |
return frames | |
def clean_chat_history(chat_history): | |
cleaned = [] | |
for msg in chat_history: | |
if isinstance(msg, dict) and isinstance(msg.get("content"), str): | |
cleaned.append(msg) | |
return cleaned | |
# New TTS functions (SNAC/Orpheus pipeline) | |
def process_prompt(prompt, voice, tokenizer, device): | |
prompt = f"{voice}: {prompt}" | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids | |
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human | |
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End markers | |
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) | |
attention_mask = torch.ones_like(modified_input_ids) | |
return modified_input_ids.to(device), attention_mask.to(device) | |
def parse_output(generated_ids): | |
token_to_find = 128257 | |
token_to_remove = 128258 | |
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True) | |
if len(token_indices[1]) > 0: | |
last_occurrence_idx = token_indices[1][-1].item() | |
cropped_tensor = generated_ids[:, last_occurrence_idx+1:] | |
else: | |
cropped_tensor = generated_ids | |
processed_rows = [] | |
for row in cropped_tensor: | |
masked_row = row[row != token_to_remove] | |
processed_rows.append(masked_row) | |
code_lists = [] | |
for row in processed_rows: | |
row_length = row.size(0) | |
new_length = (row_length // 7) * 7 | |
trimmed_row = row[:new_length] | |
trimmed_row = [t - 128266 for t in trimmed_row] | |
code_lists.append(trimmed_row) | |
return code_lists[0] | |
def redistribute_codes(code_list, snac_model): | |
device = next(snac_model.parameters()).device | |
layer_1 = [] | |
layer_2 = [] | |
layer_3 = [] | |
for i in range((len(code_list)+1)//7): | |
layer_1.append(code_list[7*i]) | |
layer_2.append(code_list[7*i+1]-4096) | |
layer_3.append(code_list[7*i+2]-(2*4096)) | |
layer_3.append(code_list[7*i+3]-(3*4096)) | |
layer_2.append(code_list[7*i+4]-(4*4096)) | |
layer_3.append(code_list[7*i+5]-(5*4096)) | |
layer_3.append(code_list[7*i+6]-(6*4096)) | |
codes = [ | |
torch.tensor(layer_1, device=device).unsqueeze(0), | |
torch.tensor(layer_2, device=device).unsqueeze(0), | |
torch.tensor(layer_3, device=device).unsqueeze(0) | |
] | |
audio_hat = snac_model.decode(codes) | |
return audio_hat.detach().squeeze().cpu().numpy() | |
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens): | |
if not text.strip(): | |
return None | |
try: | |
# Removed in-function progress calls to maintain UI consistency. | |
input_ids, attention_mask = process_prompt(text, voice, orpheus_tts_tokenizer, tts_device) | |
with torch.no_grad(): | |
generated_ids = orpheus_tts_model.generate( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
temperature=temperature, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
num_return_sequences=1, | |
eos_token_id=128258, | |
) | |
code_list = parse_output(generated_ids) | |
audio_samples = redistribute_codes(code_list, snac_model) | |
return (24000, audio_samples) | |
except Exception as e: | |
print(f"Error generating speech: {e}") | |
return None | |
# Main generate function for the chat interface | |
def generate( | |
input_dict: dict, | |
chat_history: list[dict], | |
max_new_tokens: int = 1024, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
top_k: int = 50, | |
repetition_penalty: float = 1.2, | |
): | |
""" | |
Generates chatbot responses with support for multimodal input, video processing, | |
TTS, and LLM-augmented TTS. | |
Trigger commands: | |
- "@video-infer": process video. | |
- "@<voice>-tts": directly convert text to speech. | |
- "@<voice>-llm": infer with the DeepHermes Llama model then convert to speech. | |
""" | |
text = input_dict["text"] | |
files = input_dict.get("files", []) | |
lower_text = text.strip().lower() | |
# Branch for video processing. | |
if lower_text.startswith("@video-infer"): | |
prompt = text[len("@video-infer"):].strip() | |
if files: | |
video_path = files[0] | |
frames = downsample_video(video_path) | |
messages = [ | |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
{"role": "user", "content": [{"type": "text", "text": prompt}]} | |
] | |
for frame in frames: | |
image, timestamp = frame | |
image_path = f"video_frame_{uuid.uuid4().hex}.png" | |
image.save(image_path) | |
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"}) | |
messages[1]["content"].append({"type": "image", "url": image_path}) | |
else: | |
messages = [ | |
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]}, | |
{"role": "user", "content": [{"type": "text", "text": prompt}]} | |
] | |
inputs = processor.apply_chat_template( | |
messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt" | |
).to("cuda") | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
**inputs, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"temperature": temperature, | |
"top_p": top_p, | |
"top_k": top_k, | |
"repetition_penalty": repetition_penalty, | |
} | |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield progress_bar_html("Processing video with Qwen2VL") | |
for new_text in streamer: | |
buffer += new_text.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
return | |
# Define TTS and LLM tag mappings. | |
tts_tags = {"@tara-tts": "tara", "@dan-tts": "dan", "@josh-tts": "josh", "@emma-tts": "emma"} | |
llm_tags = {"@tara-llm": "tara", "@dan-llm": "dan", "@josh-llm": "josh", "@emma-llm": "emma"} | |
# Branch for direct TTS (no LLM inference). | |
for tag, voice in tts_tags.items(): | |
if lower_text.startswith(tag): | |
text = text[len(tag):].strip() | |
yield progress_bar_html("Processing with Orpheus") | |
audio_output = generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens) | |
yield gr.Audio(audio_output, autoplay=True) | |
return | |
# Branch for LLM-augmented TTS. | |
for tag, voice in llm_tags.items(): | |
if lower_text.startswith(tag): | |
text = text[len(tag):].strip() | |
conversation = [{"role": "user", "content": text}] | |
input_ids = hermes_llm_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
input_ids = input_ids.to(hermes_llm_model.device) | |
streamer = TextIteratorStreamer(hermes_llm_tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
"input_ids": input_ids, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"top_p": top_p, | |
"top_k": 50, | |
"temperature": temperature, | |
"num_beams": 1, | |
"repetition_penalty": repetition_penalty, | |
} | |
t = Thread(target=hermes_llm_model.generate, kwargs=generation_kwargs) | |
t.start() | |
outputs = [] | |
for new_text in streamer: | |
outputs.append(new_text) | |
final_response = "".join(outputs) | |
yield progress_bar_html("Processing with Orpheus") | |
audio_output = generate_speech(final_response, voice, temperature, top_p, repetition_penalty, max_new_tokens) | |
yield gr.Audio(audio_output, autoplay=True) | |
return | |
# Default branch for regular chat (text and multimodal without TTS). | |
conversation = clean_chat_history(chat_history) | |
conversation.append({"role": "user", "content": text}) | |
# If files are provided, only non-image files (e.g. video) are processed via Qwen2VL. | |
if files: | |
# Process files using the processor (this branch no longer handles image generation) | |
if len(files) > 1: | |
inputs_list = [load_image(image) for image in files] | |
elif len(files) == 1: | |
inputs_list = [load_image(files[0])] | |
else: | |
inputs_list = [] | |
messages = [{ | |
"role": "user", | |
"content": [ | |
*[{"type": "image", "image": img} for img in inputs_list], | |
{"type": "text", "text": text}, | |
] | |
}] | |
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor(text=[prompt_full], images=inputs_list, return_tensors="pt", padding=True).to("cuda") | |
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens} | |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs) | |
thread.start() | |
buffer = "" | |
yield progress_bar_html("Processing with Qwen2VL") | |
for new_text in streamer: | |
buffer += new_text.replace("<|im_end|>", "") | |
time.sleep(0.01) | |
yield buffer | |
else: | |
input_ids = hermes_llm_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt") | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") | |
input_ids = input_ids.to(hermes_llm_model.device) | |
streamer = TextIteratorStreamer(hermes_llm_tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True) | |
generation_kwargs = { | |
"input_ids": input_ids, | |
"streamer": streamer, | |
"max_new_tokens": max_new_tokens, | |
"do_sample": True, | |
"top_p": top_p, | |
"top_k": top_k, | |
"temperature": temperature, | |
"num_beams": 1, | |
"repetition_penalty": repetition_penalty, | |
} | |
t = Thread(target=hermes_llm_model.generate, kwargs=generation_kwargs) | |
t.start() | |
outputs = [] | |
yield progress_bar_html("Processing with DeepHermes LLM") | |
for new_text in streamer: | |
outputs.append(new_text) | |
yield "".join(outputs) | |
final_response = "".join(outputs) | |
yield final_response | |
# Gradio Interface | |
demo = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS), | |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6), | |
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9), | |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50), | |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2), | |
], | |
examples=[ | |
["@josh-tts Hey! I’m Josh, [gasp] and wow, did I just surprise you with my realistic voice?"], | |
["@dan-llm Explain the General Relativity theorem in short"], | |
["@emma-tts Hey, I’m Emma, [sigh] and yes, I can talk just like a person… even when I’m tired."], | |
["@josh-llm What causes rainbows to form?"], | |
["@dan-tts Yo, I’m Dan, [groan] and yes, I can even sound annoyed if I have to."], | |
["Write python program for array rotation"], | |
[{"text": "summarize the letter", "files": ["examples/1.png"]}], | |
["@tara-tts Hey there, my name is Tara, [laugh] and I’m a speech generation model that can sound just like you!"], | |
["@tara-llm Who is Nikola Tesla, and why did he die?"], | |
["@emma-llm Explain the causes of rainbows"], | |
[{"text": "@video-infer Summarize the event in video", "files": ["examples/sky.mp4"]}], | |
[{"text": "@video-infer Describe the video", "files": ["examples/Missing.mp4"]}], | |
], | |
cache_examples=False, | |
type="messages", | |
description="# **Orpheus Edge🧤** `voice: tara, dan, emma, josh` \n `emotion: <laugh>, <chuckle>, <sigh>, <cough>, <sniffle>, <groan>, <yawn>, <gasp>. Use @video-infer, orpheus: @<voice>-tts, or @<voice>-llm triggers llm response`", | |
fill_height=True, | |
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder=" Use @tara-tts/@dan-tts for direct TTS or @tara-llm/@dan-llm for LLM+TTS, etc."), | |
stop_btn="Stop Generation", | |
multimodal=True, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch(share=True) |