Callisto-OCR / app.py
prithivMLmods's picture
Update app.py
554ae5a verified
raw
history blame
6.49 kB
import gradio as gr
import torch
import numpy as np
import cv2
import matplotlib.pyplot as plt
import random
import spaces
import time
from PIL import Image
from threading import Thread
from transformers import AutoProcessor, Gemma3ForConditionalGeneration, TextIteratorStreamer
from transformers.image_utils import load_image
#####################################
# 1. Load Gemma3 Model & Processor
#####################################
MODEL_ID = "google/gemma-3-12b-it" # Example placeholder
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
model = Gemma3ForConditionalGeneration.from_pretrained(
MODEL_ID,
trust_remote_code=True,
torch_dtype=torch.bfloat16
).to("cuda")
model.eval()
#####################################
# 2. Helper Function: Downsample Video
#####################################
def downsample_video(video_path, num_frames=10):
"""
Downsamples the video file to `num_frames` evenly spaced frames.
Each frame is converted to a PIL Image along with its timestamp.
"""
vidcap = cv2.VideoCapture(video_path)
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = vidcap.get(cv2.CAP_PROP_FPS)
frames = []
if total_frames <= 0 or fps <= 0:
vidcap.release()
return frames
frame_indices = np.linspace(0, total_frames - 1, num_frames, dtype=int)
for i in frame_indices:
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
success, image = vidcap.read()
if success:
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
pil_image = Image.fromarray(image)
timestamp = round(i / fps, 2)
frames.append((pil_image, timestamp))
vidcap.release()
return frames
#####################################
# 2.5: Parse Categories from Model Output
#####################################
def parse_inferred_categories(generated_text):
"""
A naive parser that looks for lines starting with 'Category:'
and collects the text after that as the category name.
Example lines in model output:
Category: Nutrition
Category: Outdoor Scenes
Returns a list of category strings.
"""
categories = []
for line in generated_text.split("\n"):
line = line.strip()
# Check if the line starts with 'Category:' (case-insensitive)
if line.lower().startswith("category:"):
# Extract everything after 'Category:'
cat = line.split(":", 1)[1].strip()
if cat:
categories.append(cat)
return categories
#####################################
# 3. The Inference Function
#####################################
@spaces.GPU
def video_inference(video_file, duration):
"""
- Takes a recorded video file and a chosen duration (string).
- Downsamples the video, passes frames to the Gemma3 model for inference.
- Returns model-generated text + a bar chart with categories derived from that text.
"""
if video_file is None:
return "No video provided.", None
# 3.1: Downsample the recorded video
frames = downsample_video(video_file)
if not frames:
return "Could not read frames from video.", None
# 3.2: Construct prompt
messages = [
{
"role": "user",
"content": [{"type": "text", "text": "Please describe what's happening in this video."}]
}
]
# Add frames (with timestamp) to the messages
for (image, ts) in frames:
messages[0]["content"].append({"type": "text", "text": f"Frame at {ts} seconds:"})
messages[0]["content"].append({"type": "image", "image": image})
# Prepare final prompt
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
# Collect images for model
frame_images = [img for (img, _) in frames]
inputs = processor(
text=[prompt],
images=frame_images,
return_tensors="pt",
padding=True
).to("cuda")
# 3.3: Generate text output (streaming)
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=512)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
generated_text = ""
for new_text in streamer:
generated_text += new_text
time.sleep(0.01)
# 3.4: Parse categories from model output
categories = parse_inferred_categories(generated_text)
# If no categories were found, use fallback
if not categories:
categories = ["Category A", "Category B", "Category C"]
# Create dummy values for each category
values = [random.randint(1, 10) for _ in categories]
# 3.5: Create bar chart
fig, ax = plt.subplots()
ax.bar(categories, values, color=["#4B0082", "#9370DB", "#4B0082"]*(len(categories)//3+1))
ax.set_title("Inferred Categories from Model Output")
ax.set_ylabel("Value")
ax.set_xlabel("Categories")
plt.xticks(rotation=30, ha="right")
return generated_text, fig
#####################################
# 4. Build a Professional Gradio UI
#####################################
def build_app():
with gr.Blocks() as demo:
gr.Markdown("""
# **Gemma3 (or Qwen2.5-VL) Live Video Analysis**
Record a video (from webcam or file), then click **Stop**.
Next, click **Analyze** to run the model and see textual + chart outputs.
""")
with gr.Row():
with gr.Column():
duration = gr.Radio(
choices=["5", "10", "20", "30"],
value="5",
label="Suggested Recording Duration (seconds)",
info="Select how long you plan to record before pressing Stop."
)
video = gr.Video(
label="Webcam Recording (press Record, then Stop)",
format="mp4"
)
analyze_btn = gr.Button("Analyze", variant="primary")
with gr.Column():
output_text = gr.Textbox(label="Model Output")
output_plot = gr.Plot(label="Analytics Chart")
analyze_btn.click(
fn=video_inference,
inputs=[video, duration],
outputs=[output_text, output_plot]
)
return demo
if __name__ == "__main__":
app = build_app()
app.launch(debug=True)