File size: 2,931 Bytes
f3b1002
f347918
 
0358302
c4fcb59
cd3c848
e354e80
d443926
 
 
 
 
 
f3b1002
0358302
455a710
0358302
c4fcb59
 
 
cd3c848
 
 
f347918
 
 
 
 
 
455a710
0358302
c4fcb59
 
cd3c848
 
f347918
 
dbd1461
f347918
d443926
f347918
c4fcb59
f347918
 
 
0358302
c4fcb59
cd3c848
c4fcb59
d443926
f347918
0358302
e128767
d443926
 
0358302
c4fcb59
cd3c848
0358302
f347918
d2ca184
e128767
d2ca184
f3b1002
f347918
 
 
c4fcb59
f347918
e128767
f347918
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import gradio as gr
from gender_classification import gender_classification
from emotion_classification import emotion_classification
from dog_breed import dog_breed_classification
from deepfake_vs_real import deepfake_classification
from gym_workout_classification import gym_workout_classification

# Functions to update the model state when a button is clicked.
def select_gender():
    return "gender"

def select_emotion():
    return "emotion"

def select_dog_breed():
    return "dog breed"

def select_deepfake():
    return "deepfake"

def select_gym_workout():
    return "gym workout"

# Main classification function that calls the appropriate model based on selection.
def classify(image, model_name):
    if model_name == "gender":
        return gender_classification(image)
    elif model_name == "emotion":
        return emotion_classification(image)
    elif model_name == "dog breed":
        return dog_breed_classification(image)
    elif model_name == "deepfake":
        return deepfake_classification(image)
    elif model_name == "gym workout":
        return gym_workout_classification(image)
    else:
        return {"Error": "No model selected"}

with gr.Blocks() as demo:
    # Sidebar with title and model selection buttons.
    with gr.Sidebar():
        gr.Markdown("# SigLIP2 Classification")
        with gr.Row():
            gender_btn = gr.Button("Gender Classification")
            emotion_btn = gr.Button("Emotion Classification")
            dog_breed_btn = gr.Button("Dog Breed Classification")
            deepfake_btn = gr.Button("Deepfake vs Real")
            gym_workout_btn = gr.Button("Gym Workout Classification")

        # State to hold the current model choice.
        selected_model = gr.State("gender")

        # Set model state when buttons are clicked.
        gender_btn.click(fn=select_gender, inputs=[], outputs=selected_model)
        emotion_btn.click(fn=select_emotion, inputs=[], outputs=selected_model)
        dog_breed_btn.click(fn=select_dog_breed, inputs=[], outputs=selected_model)
        deepfake_btn.click(fn=select_deepfake, inputs=[], outputs=selected_model)
        gym_workout_btn.click(fn=select_gym_workout, inputs=[], outputs=selected_model)

        gr.Markdown("### Current Model:")
        model_display = gr.Textbox(value="gender", interactive=False)
        # Update display when state changes.
        selected_model.change(lambda m: m, selected_model, model_display)

    # Main interface: image input, analyze button, and prediction output.
    with gr.Column():
        image_input = gr.Image(type="numpy", label="Upload Image")
        analyze_btn = gr.Button("Analyze")
        output_label = gr.Label(label="Prediction Scores")

        # When the "Analyze" button is clicked, use the selected model to classify the image.
        analyze_btn.click(fn=classify, inputs=[image_input, selected_model], outputs=output_label)

demo.launch()