File size: 3,704 Bytes
f3b1002
f347918
 
0358302
c4fcb59
724f709
fa4176e
e281804
5e302e0
da8863f
e354e80
f347918
 
 
 
 
 
455a710
0358302
c4fcb59
 
cd3c848
e281804
fa4176e
 
e281804
 
5e302e0
 
da8863f
 
f347918
 
dbd1461
08d30fe
 
5e302e0
 
da8863f
5e302e0
 
 
08d30fe
f347918
 
fa4176e
f347918
08d30fe
 
 
 
 
 
 
5c2777f
da8863f
5e302e0
e281804
f347918
a308843
d2ca184
f3b1002
da8863f
 
5e302e0
 
 
 
f347918
 
aa6dbf9
08d30fe
f347918
 
08d30fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import gradio as gr
from gender_classification import gender_classification
from emotion_classification import emotion_classification
from dog_breed import dog_breed_classification
from deepfake_vs_real import deepfake_classification
from gym_workout_classification import workout_classification
from augmented_waste_classifier import waste_classification
from age_classification import age_classification
from mnist_digits import classify_digit
from fashion_mnist_cloth import fashion_mnist_classification

# Main classification function that calls the appropriate model based on selection.
def classify(image, model_name):
    if model_name == "gender":
        return gender_classification(image)
    elif model_name == "emotion":
        return emotion_classification(image)
    elif model_name == "dog breed":
        return dog_breed_classification(image)
    elif model_name == "deepfake":
        return deepfake_classification(image)
    elif model_name == "gym workout":
        return workout_classification(image)
    elif model_name == "waste":
        return waste_classification(image)
    elif model_name == "age":
        return age_classification(image)
    elif model_name == "mnist":
        return classify_digit(image)
    elif model_name == "fashion_mnist":
        return fashion_mnist_classification(image)
    else:
        return {"Error": "No model selected"}

# Function to update the selected model and button styles.
def select_model(model_name):
    model_variants = {
        "gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary",
        "gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary", "fashion_mnist": "secondary"
    }
    model_variants[model_name] = "primary"
    return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants))

with gr.Blocks() as demo:
    with gr.Sidebar():
        gr.Markdown("# SigLIP2 224")
        with gr.Row():
            age_btn = gr.Button("Age Classification", variant="primary")
            gender_btn = gr.Button("Gender Classification", variant="secondary")
            emotion_btn = gr.Button("Emotion Classification", variant="secondary")
            dog_breed_btn = gr.Button("Dog Breed Classification", variant="secondary")
            deepfake_btn = gr.Button("Deepfake vs Real", variant="secondary")
            gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary")
            waste_btn = gr.Button("Waste Classification", variant="secondary")
            mnist_btn = gr.Button("Digit Classify (0-9)", variant="secondary")
            fashion_mnist_btn = gr.Button("Fashion MNIST", variant="secondary")
        
        selected_model = gr.State("age")
        gr.Markdown("### Current Model:")
        model_display = gr.Textbox(value="age", interactive=False)
        selected_model.change(lambda m: m, selected_model, model_display)

        buttons = [gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn, mnist_btn, fashion_mnist_btn]
        model_names = ["gender", "emotion", "dog breed", "deepfake", "gym workout", "waste", "age", "mnist", "fashion_mnist"]
        
        for btn, name in zip(buttons, model_names):
            btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons)
    
    with gr.Column():
        image_input = gr.Image(type="numpy", label="Upload Image")
        analyze_btn = gr.Button("Classify / Predict")
        output_label = gr.Label(label="Prediction Scores")
        analyze_btn.click(fn=classify, inputs=[image_input, selected_model], outputs=output_label)

demo.launch()