Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,263 Bytes
91f05e0 096ed03 91f05e0 096ed03 91f05e0 c20eec4 91f05e0 096ed03 91f05e0 096ed03 91f05e0 c20eec4 91f05e0 096ed03 c20eec4 91f05e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import gradio as gr
from transformers import ViTForImageClassification, ViTImageProcessor
from PIL import Image
import torch
# Load the model and processor
model_name = "prithivMLmods/Deep-Fake-Detector-v2-Model"
model = ViTForImageClassification.from_pretrained(model_name)
processor = ViTImageProcessor.from_pretrained(model_name)
def deepfake_classification(image):
"""Predicts whether an image is a Deepfake or Real."""
image = Image.fromarray(image).convert("RGB")
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class = torch.argmax(logits, dim=1).item()
# Get label mapping
label = model.config.id2label[predicted_class] if hasattr(model.config, "id2label") else str(predicted_class)
return {label: 1.0} # Gradio Label output expects a dictionary
# Create Gradio interface
iface = gr.Interface(
fn=deepfake_classification,
inputs=gr.Image(type="numpy"),
outputs=gr.Label(label="Prediction"),
title="Deepfake vs. Real Image Classification",
description="Upload an image to determine if it's a Deepfake or a Real one."
)
# Launch the app
if __name__ == "__main__":
iface.launch() |