import gradio as gr from gender_classification import gender_classification from emotion_classification import emotion_classification from dog_breed import dog_breed_classification from deepfake_vs_real import deepfake_classification from gym_workout_classification import workout_classification from augmented_waste_classifier import waste_classification from age_classification import age_classification from mnist_digits import classify_digit from fashion_mnist_cloth import fashion_mnist_classification # Main classification function that calls the appropriate model based on selection. def classify(image, model_name): if model_name == "gender": return gender_classification(image) elif model_name == "emotion": return emotion_classification(image) elif model_name == "dog breed": return dog_breed_classification(image) elif model_name == "deepfake": return deepfake_classification(image) elif model_name == "gym workout": return workout_classification(image) elif model_name == "waste": return waste_classification(image) elif model_name == "age": return age_classification(image) elif model_name == "mnist": return classify_digit(image) elif model_name == "fashion_mnist": return fashion_mnist_classification(image) else: return {"Error": "No model selected"} # Function to update the selected model and button styles. def select_model(model_name): model_variants = { "gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary", "gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary", "fashion_mnist": "secondary" } model_variants[model_name] = "primary" return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants)) with gr.Blocks() as demo: with gr.Sidebar(): gr.Markdown("# SigLIP2 224") with gr.Row(): age_btn = gr.Button("Age Classification", variant="primary") gender_btn = gr.Button("Gender Classification", variant="secondary") emotion_btn = gr.Button("Emotion Classification", variant="secondary") dog_breed_btn = gr.Button("Dog Breed Classification", variant="secondary") deepfake_btn = gr.Button("Deepfake vs Real", variant="secondary") gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary") waste_btn = gr.Button("Waste Classification", variant="secondary") mnist_btn = gr.Button("Digit Classify (0-9)", variant="secondary") fashion_mnist_btn = gr.Button("Fashion MNIST", variant="secondary") selected_model = gr.State("age") gr.Markdown("### Current Model:") model_display = gr.Textbox(value="age", interactive=False) selected_model.change(lambda m: m, selected_model, model_display) buttons = [gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn, mnist_btn, fashion_mnist_btn] model_names = ["gender", "emotion", "dog breed", "deepfake", "gym workout", "waste", "age", "mnist", "fashion_mnist"] for btn, name in zip(buttons, model_names): btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons) with gr.Column(): image_input = gr.Image(type="numpy", label="Upload Image") analyze_btn = gr.Button("Classify / Predict") output_label = gr.Label(label="Prediction Scores") analyze_btn.click(fn=classify, inputs=[image_input, selected_model], outputs=output_label) demo.launch()