import torch import spaces from transformers import AutoTokenizer, AutoModelForCausalLM import gradio as gr from snac import SNAC def redistribute_codes(row): """ Convert a sequence of token codes into an audio waveform using SNAC. The code assumes each 7 tokens represent one group of instructions. """ row_length = row.size(0) new_length = (row_length // 7) * 7 trimmed_row = row[:new_length] code_list = [t - 128266 for t in trimmed_row] layer_1, layer_2, layer_3 = [], [], [] for i in range((len(code_list) + 1) // 7): layer_1.append(code_list[7 * i][None]) layer_2.append(code_list[7 * i + 1][None] - 4096) layer_3.append(code_list[7 * i + 2][None] - (2 * 4096)) layer_3.append(code_list[7 * i + 3][None] - (3 * 4096)) layer_2.append(code_list[7 * i + 4][None] - (4 * 4096)) layer_3.append(code_list[7 * i + 5][None] - (5 * 4096)) layer_3.append(code_list[7 * i + 6][None] - (6 * 4096)) with torch.no_grad(): codes = [ torch.concat(layer_1), torch.concat(layer_2), torch.concat(layer_3) ] for i in range(len(codes)): codes[i][codes[i] < 0] = 0 codes[i] = codes[i][None] audio_hat = snac_model.decode(codes) return audio_hat.cpu()[0, 0] # Load the SNAC model for audio decoding snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz").to("cuda") # Load the single-speaker language model tokenizer = AutoTokenizer.from_pretrained('prithivMLmods/Llama-3B-Mono-Cooper') model = AutoModelForCausalLM.from_pretrained( 'prithivMLmods/Llama-3B-Mono-Cooper', torch_dtype=torch.bfloat16 ).cuda() @spaces.GPU def generate_audio(text, temperature, top_p, max_new_tokens): """ Given input text, generate speech audio. """ speaker = "Cooper" prompt = f'<|begin_of_text|>{speaker}: {text}<|eot_id|>' input_ids = tokenizer(prompt, add_special_tokens=False, return_tensors='pt').to('cuda') with torch.no_grad(): generated_ids = model.generate( **input_ids, max_new_tokens=max_new_tokens, do_sample=True, temperature=temperature, top_p=top_p, repetition_penalty=1.1, num_return_sequences=1, eos_token_id=128258, ) row = generated_ids[0, input_ids['input_ids'].shape[1]:] y_tensor = redistribute_codes(row) y_np = y_tensor.detach().cpu().numpy() return (24000, y_np) # Gradio Interface with gr.Blocks() as demo: gr.Markdown("# Llama-3B-Mono-Cooper - Single Speaker Audio Generation") gr.Markdown("Generate speech audio using the `prithivMLmods/Llama-3B-Mono-Cooper` model.") with gr.Row(): text_input = gr.Textbox(lines=4, label="Input Text") with gr.Row(): temp_slider = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.9, label="Temperature") top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.05, value=0.8, label="Top-p") tokens_slider = gr.Slider(minimum=100, maximum=2000, step=50, value=1200, label="Max New Tokens") output_audio = gr.Audio(type="numpy", label="Generated Audio") generate_button = gr.Button("Generate Audio") generate_button.click( fn=generate_audio, inputs=[text_input, temp_slider, top_p_slider, tokens_slider], outputs=output_audio ) if __name__ == "__main__": demo.launch()