Spaces:
Running
on
Zero
Running
on
Zero
Create dog_breed.py
Browse files- dog_breed.py +161 -0
dog_breed.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import spaces
|
3 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
4 |
+
from PIL import Image
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Load model and processor
|
8 |
+
model_name = "prithivMLmods/Dog-Breed-120"
|
9 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
10 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
11 |
+
|
12 |
+
@spaces.GPU
|
13 |
+
def dog_breed_classification(image):
|
14 |
+
"""Predicts the dog breed for an image."""
|
15 |
+
image = Image.fromarray(image).convert("RGB")
|
16 |
+
inputs = processor(images=image, return_tensors="pt")
|
17 |
+
|
18 |
+
with torch.no_grad():
|
19 |
+
outputs = model(**inputs)
|
20 |
+
logits = outputs.logits
|
21 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
22 |
+
|
23 |
+
labels = {
|
24 |
+
"0": "affenpinscher",
|
25 |
+
"1": "afghan_hound",
|
26 |
+
"2": "african_hunting_dog",
|
27 |
+
"3": "airedale",
|
28 |
+
"4": "american_staffordshire_terrier",
|
29 |
+
"5": "appenzeller",
|
30 |
+
"6": "australian_terrier",
|
31 |
+
"7": "basenji",
|
32 |
+
"8": "basset",
|
33 |
+
"9": "beagle",
|
34 |
+
"10": "bedlington_terrier",
|
35 |
+
"11": "bernese_mountain_dog",
|
36 |
+
"12": "black-and-tan_coonhound",
|
37 |
+
"13": "blenheim_spaniel",
|
38 |
+
"14": "bloodhound",
|
39 |
+
"15": "bluetick",
|
40 |
+
"16": "border_collie",
|
41 |
+
"17": "border_terrier",
|
42 |
+
"18": "borzoi",
|
43 |
+
"19": "boston_bull",
|
44 |
+
"20": "bouvier_des_flandres",
|
45 |
+
"21": "boxer",
|
46 |
+
"22": "brabancon_griffon",
|
47 |
+
"23": "briard",
|
48 |
+
"24": "brittany_spaniel",
|
49 |
+
"25": "bull_mastiff",
|
50 |
+
"26": "cairn",
|
51 |
+
"27": "cardigan",
|
52 |
+
"28": "chesapeake_bay_retriever",
|
53 |
+
"29": "chihuahua",
|
54 |
+
"30": "chow",
|
55 |
+
"31": "clumber",
|
56 |
+
"32": "cocker_spaniel",
|
57 |
+
"33": "collie",
|
58 |
+
"34": "curly-coated_retriever",
|
59 |
+
"35": "dandie_dinmont",
|
60 |
+
"36": "dhole",
|
61 |
+
"37": "dingo",
|
62 |
+
"38": "doberman",
|
63 |
+
"39": "english_foxhound",
|
64 |
+
"40": "english_setter",
|
65 |
+
"41": "english_springer",
|
66 |
+
"42": "entlebucher",
|
67 |
+
"43": "eskimo_dog",
|
68 |
+
"44": "flat-coated_retriever",
|
69 |
+
"45": "french_bulldog",
|
70 |
+
"46": "german_shepherd",
|
71 |
+
"47": "german_short-haired_pointer",
|
72 |
+
"48": "giant_schnauzer",
|
73 |
+
"49": "golden_retriever",
|
74 |
+
"50": "gordon_setter",
|
75 |
+
"51": "great_dane",
|
76 |
+
"52": "great_pyrenees",
|
77 |
+
"53": "greater_swiss_mountain_dog",
|
78 |
+
"54": "groenendael",
|
79 |
+
"55": "ibizan_hound",
|
80 |
+
"56": "irish_setter",
|
81 |
+
"57": "irish_terrier",
|
82 |
+
"58": "irish_water_spaniel",
|
83 |
+
"59": "irish_wolfhound",
|
84 |
+
"60": "italian_greyhound",
|
85 |
+
"61": "japanese_spaniel",
|
86 |
+
"62": "keeshond",
|
87 |
+
"63": "kelpie",
|
88 |
+
"64": "kerry_blue_terrier",
|
89 |
+
"65": "komondor",
|
90 |
+
"66": "kuvasz",
|
91 |
+
"67": "labrador_retriever",
|
92 |
+
"68": "lakeland_terrier",
|
93 |
+
"69": "leonberg",
|
94 |
+
"70": "lhasa",
|
95 |
+
"71": "malamute",
|
96 |
+
"72": "malinois",
|
97 |
+
"73": "maltese_dog",
|
98 |
+
"74": "mexican_hairless",
|
99 |
+
"75": "miniature_pinscher",
|
100 |
+
"76": "miniature_poodle",
|
101 |
+
"77": "miniature_schnauzer",
|
102 |
+
"78": "newfoundland",
|
103 |
+
"79": "norfolk_terrier",
|
104 |
+
"80": "norwegian_elkhound",
|
105 |
+
"81": "norwich_terrier",
|
106 |
+
"82": "old_english_sheepdog",
|
107 |
+
"83": "otterhound",
|
108 |
+
"84": "papillon",
|
109 |
+
"85": "pekinese",
|
110 |
+
"86": "pembroke",
|
111 |
+
"87": "pomeranian",
|
112 |
+
"88": "pug",
|
113 |
+
"89": "redbone",
|
114 |
+
"90": "rhodesian_ridgeback",
|
115 |
+
"91": "rottweiler",
|
116 |
+
"92": "saint_bernard",
|
117 |
+
"93": "saluki",
|
118 |
+
"94": "samoyed",
|
119 |
+
"95": "schipperke",
|
120 |
+
"96": "scotch_terrier",
|
121 |
+
"97": "scottish_deerhound",
|
122 |
+
"98": "sealyham_terrier",
|
123 |
+
"99": "shetland_sheepdog",
|
124 |
+
"100": "shih-tzu",
|
125 |
+
"101": "siberian_husky",
|
126 |
+
"102": "silky_terrier",
|
127 |
+
"103": "soft-coated_wheaten_terrier",
|
128 |
+
"104": "staffordshire_bullterrier",
|
129 |
+
"105": "standard_poodle",
|
130 |
+
"106": "standard_schnauzer",
|
131 |
+
"107": "sussex_spaniel",
|
132 |
+
"108": "test",
|
133 |
+
"109": "tibetan_mastiff",
|
134 |
+
"110": "tibetan_terrier",
|
135 |
+
"111": "toy_poodle",
|
136 |
+
"112": "toy_terrier",
|
137 |
+
"113": "vizsla",
|
138 |
+
"114": "walker_hound",
|
139 |
+
"115": "weimaraner",
|
140 |
+
"116": "welsh_springer_spaniel",
|
141 |
+
"117": "west_highland_white_terrier",
|
142 |
+
"118": "whippet",
|
143 |
+
"119": "wire-haired_fox_terrier",
|
144 |
+
"120": "yorkshire_terrier"
|
145 |
+
}
|
146 |
+
|
147 |
+
predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
148 |
+
return predictions
|
149 |
+
|
150 |
+
# Create Gradio interface
|
151 |
+
iface = gr.Interface(
|
152 |
+
fn=dog_breed_classification,
|
153 |
+
inputs=gr.Image(type="numpy"),
|
154 |
+
outputs=gr.Label(label="Prediction Scores"),
|
155 |
+
title="Dog Breed Classification",
|
156 |
+
description="Upload an image to classify it into one of the 121 dog breed categories."
|
157 |
+
)
|
158 |
+
|
159 |
+
# Launch the app
|
160 |
+
if __name__ == "__main__":
|
161 |
+
iface.launch()
|