prithivMLmods commited on
Commit
da8863f
·
verified ·
1 Parent(s): f38ab86

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -7,6 +7,7 @@ from gym_workout_classification import workout_classification
7
  from augmented_waste_classifier import waste_classification
8
  from age_classification import age_classification
9
  from mnist_digits import classify_digit
 
10
 
11
  # Main classification function that calls the appropriate model based on selection.
12
  def classify(image, model_name):
@@ -26,6 +27,8 @@ def classify(image, model_name):
26
  return age_classification(image)
27
  elif model_name == "mnist":
28
  return classify_digit(image)
 
 
29
  else:
30
  return {"Error": "No model selected"}
31
 
@@ -33,7 +36,7 @@ def classify(image, model_name):
33
  def select_model(model_name):
34
  model_variants = {
35
  "gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary",
36
- "gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary"
37
  }
38
  model_variants[model_name] = "primary"
39
  return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants))
@@ -50,14 +53,15 @@ with gr.Blocks() as demo:
50
  gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary")
51
  waste_btn = gr.Button("Waste Classification", variant="secondary")
52
  mnist_btn = gr.Button("Digit Classify (0-9)", variant="secondary")
 
53
 
54
  selected_model = gr.State("age")
55
  gr.Markdown("### Current Model:")
56
  model_display = gr.Textbox(value="age", interactive=False)
57
  selected_model.change(lambda m: m, selected_model, model_display)
58
 
59
- buttons = [gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn, mnist_btn]
60
- model_names = ["gender", "emotion", "dog breed", "deepfake", "gym workout", "waste", "age", "mnist"]
61
 
62
  for btn, name in zip(buttons, model_names):
63
  btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons)
 
7
  from augmented_waste_classifier import waste_classification
8
  from age_classification import age_classification
9
  from mnist_digits import classify_digit
10
+ from fashion_mnist_cloth import fashion_mnist_classification
11
 
12
  # Main classification function that calls the appropriate model based on selection.
13
  def classify(image, model_name):
 
27
  return age_classification(image)
28
  elif model_name == "mnist":
29
  return classify_digit(image)
30
+ elif model_name == "fashion_mnist":
31
+ return fashion_mnist_classification(image)
32
  else:
33
  return {"Error": "No model selected"}
34
 
 
36
  def select_model(model_name):
37
  model_variants = {
38
  "gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary",
39
+ "gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary", "fashion_mnist": "secondary"
40
  }
41
  model_variants[model_name] = "primary"
42
  return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants))
 
53
  gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary")
54
  waste_btn = gr.Button("Waste Classification", variant="secondary")
55
  mnist_btn = gr.Button("Digit Classify (0-9)", variant="secondary")
56
+ fashion_mnist_btn = gr.Button("Fashion MNIST", variant="secondary")
57
 
58
  selected_model = gr.State("age")
59
  gr.Markdown("### Current Model:")
60
  model_display = gr.Textbox(value="age", interactive=False)
61
  selected_model.change(lambda m: m, selected_model, model_display)
62
 
63
+ buttons = [gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn, mnist_btn, fashion_mnist_btn]
64
+ model_names = ["gender", "emotion", "dog breed", "deepfake", "gym workout", "waste", "age", "mnist", "fashion_mnist"]
65
 
66
  for btn, name in zip(buttons, model_names):
67
  btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons)