Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,431 +1,343 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
import uuid
|
4 |
-
import json
|
5 |
-
import time
|
6 |
-
import asyncio
|
7 |
-
from threading import Thread
|
8 |
-
|
9 |
import gradio as gr
|
10 |
import spaces
|
|
|
|
|
11 |
import torch
|
12 |
-
import numpy as np
|
13 |
from PIL import Image
|
14 |
-
import
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
from
|
24 |
-
|
25 |
-
|
26 |
-
from
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
MODEL_ID_QWEN,
|
50 |
-
trust_remote_code=True,
|
51 |
-
torch_dtype=torch.float16
|
52 |
-
).to("cuda").eval()
|
53 |
-
|
54 |
-
# Load Orpheus TTS model and SNAC for TTS synthesis
|
55 |
-
print("Loading SNAC model...")
|
56 |
-
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
57 |
-
snac_model = snac_model.to(tts_device)
|
58 |
-
|
59 |
-
tts_model_name = "canopylabs/orpheus-3b-0.1-ft"
|
60 |
-
# Download only model config and safetensors
|
61 |
-
snapshot_download(
|
62 |
-
repo_id=tts_model_name,
|
63 |
-
allow_patterns=[
|
64 |
-
"config.json",
|
65 |
-
"*.safetensors",
|
66 |
-
"model.safetensors.index.json",
|
67 |
-
],
|
68 |
-
ignore_patterns=[
|
69 |
-
"optimizer.pt",
|
70 |
-
"pytorch_model.bin",
|
71 |
-
"training_args.bin",
|
72 |
-
"scheduler.pt",
|
73 |
-
"tokenizer.json",
|
74 |
-
"tokenizer_config.json",
|
75 |
-
"special_tokens_map.json",
|
76 |
-
"vocab.json",
|
77 |
-
"merges.txt",
|
78 |
-
"tokenizer.*"
|
79 |
-
]
|
80 |
-
)
|
81 |
-
orpheus_tts_model = AutoModelForCausalLM.from_pretrained(tts_model_name, torch_dtype=torch.bfloat16)
|
82 |
-
orpheus_tts_model.to(tts_device)
|
83 |
-
orpheus_tts_tokenizer = AutoTokenizer.from_pretrained(tts_model_name)
|
84 |
-
print(f"Orpheus TTS model loaded to {tts_device}")
|
85 |
-
|
86 |
-
# Some global parameters for chat responses
|
87 |
-
MAX_MAX_NEW_TOKENS = 2048
|
88 |
-
DEFAULT_MAX_NEW_TOKENS = 1024
|
89 |
-
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
90 |
-
|
91 |
-
# (Image generation related code has been fully removed.)
|
92 |
-
|
93 |
-
MAX_SEED = np.iinfo(np.int32).max
|
94 |
-
|
95 |
-
# Utility functions
|
96 |
-
def save_image(img: Image.Image) -> str:
|
97 |
-
unique_name = str(uuid.uuid4()) + ".png"
|
98 |
-
img.save(unique_name)
|
99 |
-
return unique_name
|
100 |
-
|
101 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
102 |
-
if randomize_seed:
|
103 |
-
seed = random.randint(0, MAX_SEED)
|
104 |
-
return seed
|
105 |
-
|
106 |
-
def progress_bar_html(label: str) -> str:
|
107 |
-
return f'''
|
108 |
-
<div style="display: flex; align-items: center;">
|
109 |
-
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
110 |
-
<div style="width: 110px; height: 5px; background-color: #FFA07A; border-radius: 2px; overflow: hidden;">
|
111 |
-
<div style="width: 100%; height: 100%; background-color: #FF4500; animation: loading 1.5s linear infinite;"></div>
|
112 |
-
</div>
|
113 |
-
</div>
|
114 |
-
<style>
|
115 |
-
@keyframes loading {{
|
116 |
-
0% {{ transform: translateX(-100%); }}
|
117 |
-
100% {{ transform: translateX(100%); }}
|
118 |
-
}}
|
119 |
-
</style>
|
120 |
-
'''
|
121 |
-
|
122 |
-
def downsample_video(video_path):
|
123 |
-
vidcap = cv2.VideoCapture(video_path)
|
124 |
-
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
125 |
-
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
126 |
-
frames = []
|
127 |
-
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
128 |
-
for i in frame_indices:
|
129 |
-
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
130 |
-
success, image = vidcap.read()
|
131 |
-
if success:
|
132 |
-
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
133 |
-
pil_image = Image.fromarray(image)
|
134 |
-
timestamp = round(i / fps, 2)
|
135 |
-
frames.append((pil_image, timestamp))
|
136 |
-
vidcap.release()
|
137 |
-
return frames
|
138 |
-
|
139 |
-
def clean_chat_history(chat_history):
|
140 |
-
cleaned = []
|
141 |
-
for msg in chat_history:
|
142 |
-
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
143 |
-
cleaned.append(msg)
|
144 |
-
return cleaned
|
145 |
-
|
146 |
-
# New TTS functions (SNAC/Orpheus pipeline)
|
147 |
-
def process_prompt(prompt, voice, tokenizer, device):
|
148 |
-
prompt = f"{voice}: {prompt}"
|
149 |
-
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
|
150 |
-
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
|
151 |
-
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End markers
|
152 |
-
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
|
153 |
-
attention_mask = torch.ones_like(modified_input_ids)
|
154 |
-
return modified_input_ids.to(device), attention_mask.to(device)
|
155 |
-
|
156 |
-
def parse_output(generated_ids):
|
157 |
-
token_to_find = 128257
|
158 |
-
token_to_remove = 128258
|
159 |
-
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
160 |
-
if len(token_indices[1]) > 0:
|
161 |
-
last_occurrence_idx = token_indices[1][-1].item()
|
162 |
-
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
|
163 |
-
else:
|
164 |
-
cropped_tensor = generated_ids
|
165 |
-
processed_rows = []
|
166 |
-
for row in cropped_tensor:
|
167 |
-
masked_row = row[row != token_to_remove]
|
168 |
-
processed_rows.append(masked_row)
|
169 |
-
code_lists = []
|
170 |
-
for row in processed_rows:
|
171 |
-
row_length = row.size(0)
|
172 |
-
new_length = (row_length // 7) * 7
|
173 |
-
trimmed_row = row[:new_length]
|
174 |
-
trimmed_row = [t - 128266 for t in trimmed_row]
|
175 |
-
code_lists.append(trimmed_row)
|
176 |
-
return code_lists[0]
|
177 |
-
|
178 |
-
def redistribute_codes(code_list, snac_model):
|
179 |
-
device = next(snac_model.parameters()).device
|
180 |
-
layer_1 = []
|
181 |
-
layer_2 = []
|
182 |
-
layer_3 = []
|
183 |
-
for i in range((len(code_list)+1)//7):
|
184 |
-
layer_1.append(code_list[7*i])
|
185 |
-
layer_2.append(code_list[7*i+1]-4096)
|
186 |
-
layer_3.append(code_list[7*i+2]-(2*4096))
|
187 |
-
layer_3.append(code_list[7*i+3]-(3*4096))
|
188 |
-
layer_2.append(code_list[7*i+4]-(4*4096))
|
189 |
-
layer_3.append(code_list[7*i+5]-(5*4096))
|
190 |
-
layer_3.append(code_list[7*i+6]-(6*4096))
|
191 |
-
codes = [
|
192 |
-
torch.tensor(layer_1, device=device).unsqueeze(0),
|
193 |
-
torch.tensor(layer_2, device=device).unsqueeze(0),
|
194 |
-
torch.tensor(layer_3, device=device).unsqueeze(0)
|
195 |
-
]
|
196 |
-
audio_hat = snac_model.decode(codes)
|
197 |
-
return audio_hat.detach().squeeze().cpu().numpy()
|
198 |
|
199 |
-
def
|
200 |
-
if
|
201 |
-
return None
|
202 |
try:
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
except Exception as e:
|
221 |
-
|
222 |
-
return None
|
223 |
|
224 |
-
# Main generate function for the chat interface
|
225 |
@spaces.GPU
|
226 |
-
def
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
"""
|
236 |
-
Generates chatbot responses with support for multimodal input, video processing,
|
237 |
-
TTS, and LLM-augmented TTS.
|
238 |
-
|
239 |
-
Trigger commands:
|
240 |
-
- "@video-infer": process video.
|
241 |
-
- "@<voice>-tts": directly convert text to speech.
|
242 |
-
- "@<voice>-llm": infer with the DeepHermes Llama model then convert to speech.
|
243 |
-
"""
|
244 |
-
text = input_dict["text"]
|
245 |
-
files = input_dict.get("files", [])
|
246 |
-
lower_text = text.strip().lower()
|
247 |
-
|
248 |
-
# Branch for video processing.
|
249 |
-
if lower_text.startswith("@video-infer"):
|
250 |
-
prompt = text[len("@video-infer"):].strip()
|
251 |
-
if files:
|
252 |
-
video_path = files[0]
|
253 |
-
frames = downsample_video(video_path)
|
254 |
-
messages = [
|
255 |
-
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
256 |
-
{"role": "user", "content": [{"type": "text", "text": prompt}]}
|
257 |
-
]
|
258 |
-
for frame in frames:
|
259 |
-
image, timestamp = frame
|
260 |
-
image_path = f"video_frame_{uuid.uuid4().hex}.png"
|
261 |
-
image.save(image_path)
|
262 |
-
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
263 |
-
messages[1]["content"].append({"type": "image", "url": image_path})
|
264 |
-
else:
|
265 |
-
messages = [
|
266 |
-
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
267 |
-
{"role": "user", "content": [{"type": "text", "text": prompt}]}
|
268 |
-
]
|
269 |
-
inputs = processor.apply_chat_template(
|
270 |
-
messages, tokenize=True, add_generation_prompt=True, return_dict=True, return_tensors="pt"
|
271 |
-
).to("cuda")
|
272 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
273 |
-
generation_kwargs = {
|
274 |
-
**inputs,
|
275 |
-
"streamer": streamer,
|
276 |
-
"max_new_tokens": max_new_tokens,
|
277 |
-
"do_sample": True,
|
278 |
-
"temperature": temperature,
|
279 |
-
"top_p": top_p,
|
280 |
-
"top_k": top_k,
|
281 |
-
"repetition_penalty": repetition_penalty,
|
282 |
-
}
|
283 |
-
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
284 |
-
thread.start()
|
285 |
-
buffer = ""
|
286 |
-
yield progress_bar_html("Processing video with Qwen2VL")
|
287 |
-
for new_text in streamer:
|
288 |
-
buffer += new_text.replace("<|im_end|>", "")
|
289 |
-
time.sleep(0.01)
|
290 |
-
yield buffer
|
291 |
-
return
|
292 |
-
|
293 |
-
# Define TTS and LLM tag mappings.
|
294 |
-
tts_tags = {"@tara-tts": "tara", "@dan-tts": "dan", "@josh-tts": "josh", "@emma-tts": "emma"}
|
295 |
-
llm_tags = {"@tara-llm": "tara", "@dan-llm": "dan", "@josh-llm": "josh", "@emma-llm": "emma"}
|
296 |
-
|
297 |
-
# Branch for direct TTS (no LLM inference).
|
298 |
-
for tag, voice in tts_tags.items():
|
299 |
-
if lower_text.startswith(tag):
|
300 |
-
text = text[len(tag):].strip()
|
301 |
-
yield progress_bar_html("Processing with Orpheus")
|
302 |
-
audio_output = generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens)
|
303 |
-
yield gr.Audio(audio_output, autoplay=True)
|
304 |
-
return
|
305 |
-
|
306 |
-
# Branch for LLM-augmented TTS.
|
307 |
-
for tag, voice in llm_tags.items():
|
308 |
-
if lower_text.startswith(tag):
|
309 |
-
text = text[len(tag):].strip()
|
310 |
-
conversation = [{"role": "user", "content": text}]
|
311 |
-
input_ids = hermes_llm_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
312 |
-
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
313 |
-
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
314 |
-
input_ids = input_ids.to(hermes_llm_model.device)
|
315 |
-
streamer = TextIteratorStreamer(hermes_llm_tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
316 |
-
generation_kwargs = {
|
317 |
-
"input_ids": input_ids,
|
318 |
-
"streamer": streamer,
|
319 |
-
"max_new_tokens": max_new_tokens,
|
320 |
-
"do_sample": True,
|
321 |
-
"top_p": top_p,
|
322 |
-
"top_k": 50,
|
323 |
-
"temperature": temperature,
|
324 |
-
"num_beams": 1,
|
325 |
-
"repetition_penalty": repetition_penalty,
|
326 |
-
}
|
327 |
-
t = Thread(target=hermes_llm_model.generate, kwargs=generation_kwargs)
|
328 |
-
t.start()
|
329 |
-
outputs = []
|
330 |
-
for new_text in streamer:
|
331 |
-
outputs.append(new_text)
|
332 |
-
final_response = "".join(outputs)
|
333 |
-
yield progress_bar_html("Processing with Orpheus")
|
334 |
-
audio_output = generate_speech(final_response, voice, temperature, top_p, repetition_penalty, max_new_tokens)
|
335 |
-
yield gr.Audio(audio_output, autoplay=True)
|
336 |
-
return
|
337 |
-
|
338 |
-
# Default branch for regular chat (text and multimodal without TTS).
|
339 |
-
conversation = clean_chat_history(chat_history)
|
340 |
-
conversation.append({"role": "user", "content": text})
|
341 |
-
# If files are provided, only non-image files (e.g. video) are processed via Qwen2VL.
|
342 |
-
if files:
|
343 |
-
# Process files using the processor (this branch no longer handles image generation)
|
344 |
-
if len(files) > 1:
|
345 |
-
inputs_list = [load_image(image) for image in files]
|
346 |
-
elif len(files) == 1:
|
347 |
-
inputs_list = [load_image(files[0])]
|
348 |
else:
|
349 |
-
|
350 |
-
|
|
|
|
|
|
|
|
|
|
|
351 |
"role": "user",
|
352 |
"content": [
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
360 |
-
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
361 |
-
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
362 |
-
thread.start()
|
363 |
-
buffer = ""
|
364 |
-
yield progress_bar_html("Processing with Qwen2VL")
|
365 |
-
for new_text in streamer:
|
366 |
-
buffer += new_text.replace("<|im_end|>", "")
|
367 |
-
time.sleep(0.01)
|
368 |
-
yield buffer
|
369 |
-
else:
|
370 |
-
input_ids = hermes_llm_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
371 |
-
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
372 |
-
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
373 |
-
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
374 |
-
input_ids = input_ids.to(hermes_llm_model.device)
|
375 |
-
streamer = TextIteratorStreamer(hermes_llm_tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
376 |
-
generation_kwargs = {
|
377 |
-
"input_ids": input_ids,
|
378 |
-
"streamer": streamer,
|
379 |
-
"max_new_tokens": max_new_tokens,
|
380 |
-
"do_sample": True,
|
381 |
-
"top_p": top_p,
|
382 |
-
"top_k": top_k,
|
383 |
-
"temperature": temperature,
|
384 |
-
"num_beams": 1,
|
385 |
-
"repetition_penalty": repetition_penalty,
|
386 |
}
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
4 |
+
from qwen_vl_utils import process_vision_info
|
5 |
import torch
|
|
|
6 |
from PIL import Image
|
7 |
+
import os
|
8 |
+
import uuid
|
9 |
+
import io
|
10 |
+
from threading import Thread
|
11 |
+
from reportlab.lib.pagesizes import A4
|
12 |
+
from reportlab.lib.styles import getSampleStyleSheet
|
13 |
+
from reportlab.lib import colors
|
14 |
+
from reportlab.platypus import SimpleDocTemplate, Image as RLImage, Paragraph, Spacer
|
15 |
+
from reportlab.lib.units import inch
|
16 |
+
from reportlab.pdfbase import pdfmetrics
|
17 |
+
from reportlab.pdfbase.ttfonts import TTFont
|
18 |
+
import docx
|
19 |
+
from docx.enum.text import WD_ALIGN_PARAGRAPH
|
20 |
+
|
21 |
+
# Define model options
|
22 |
+
MODEL_OPTIONS = {
|
23 |
+
"Qwen2VL Base": "Qwen/Qwen2-VL-2B-Instruct",
|
24 |
+
"Latex OCR": "prithivMLmods/Qwen2-VL-OCR-2B-Instruct",
|
25 |
+
"Math Prase": "prithivMLmods/Qwen2-VL-Math-Prase-2B-Instruct",
|
26 |
+
"Text Analogy Ocrtest": "prithivMLmods/Qwen2-VL-Ocrtest-2B-Instruct"
|
27 |
+
}
|
28 |
+
|
29 |
+
# Preload models and processors into CUDA
|
30 |
+
models = {}
|
31 |
+
processors = {}
|
32 |
+
for name, model_id in MODEL_OPTIONS.items():
|
33 |
+
print(f"Loading {name}...")
|
34 |
+
models[name] = Qwen2VLForConditionalGeneration.from_pretrained(
|
35 |
+
model_id,
|
36 |
+
trust_remote_code=True,
|
37 |
+
torch_dtype=torch.float16
|
38 |
+
).to("cuda").eval()
|
39 |
+
processors[name] = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
40 |
+
|
41 |
+
image_extensions = Image.registered_extensions()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
def identify_and_save_blob(blob_path):
|
44 |
+
"""Identifies if the blob is an image and saves it."""
|
|
|
45 |
try:
|
46 |
+
with open(blob_path, 'rb') as file:
|
47 |
+
blob_content = file.read()
|
48 |
+
try:
|
49 |
+
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
|
50 |
+
extension = ".png" # Default to PNG for saving
|
51 |
+
media_type = "image"
|
52 |
+
except (IOError, SyntaxError):
|
53 |
+
raise ValueError("Unsupported media type. Please upload a valid image.")
|
54 |
+
|
55 |
+
filename = f"temp_{uuid.uuid4()}_media{extension}"
|
56 |
+
with open(filename, "wb") as f:
|
57 |
+
f.write(blob_content)
|
58 |
+
|
59 |
+
return filename, media_type
|
60 |
+
|
61 |
+
except FileNotFoundError:
|
62 |
+
raise ValueError(f"The file {blob_path} was not found.")
|
63 |
except Exception as e:
|
64 |
+
raise ValueError(f"An error occurred while processing the file: {e}")
|
|
|
65 |
|
|
|
66 |
@spaces.GPU
|
67 |
+
def qwen_inference(model_name, media_input, text_input=None):
|
68 |
+
"""Handles inference for the selected model."""
|
69 |
+
model = models[model_name]
|
70 |
+
processor = processors[model_name]
|
71 |
+
|
72 |
+
if isinstance(media_input, str):
|
73 |
+
media_path = media_input
|
74 |
+
if media_path.endswith(tuple([i for i in image_extensions.keys()])):
|
75 |
+
media_type = "image"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
else:
|
77 |
+
try:
|
78 |
+
media_path, media_type = identify_and_save_blob(media_input)
|
79 |
+
except Exception as e:
|
80 |
+
raise ValueError("Unsupported media type. Please upload a valid image.")
|
81 |
+
|
82 |
+
messages = [
|
83 |
+
{
|
84 |
"role": "user",
|
85 |
"content": [
|
86 |
+
{
|
87 |
+
"type": media_type,
|
88 |
+
media_type: media_path
|
89 |
+
},
|
90 |
+
{"type": "text", "text": text_input},
|
91 |
+
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
}
|
93 |
+
]
|
94 |
+
|
95 |
+
text = processor.apply_chat_template(
|
96 |
+
messages, tokenize=False, add_generation_prompt=True
|
97 |
+
)
|
98 |
+
image_inputs, _ = process_vision_info(messages)
|
99 |
+
inputs = processor(
|
100 |
+
text=[text],
|
101 |
+
images=image_inputs,
|
102 |
+
padding=True,
|
103 |
+
return_tensors="pt",
|
104 |
+
).to("cuda")
|
105 |
+
|
106 |
+
streamer = TextIteratorStreamer(
|
107 |
+
processor.tokenizer, skip_prompt=True, skip_special_tokens=True
|
108 |
+
)
|
109 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
110 |
+
|
111 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
112 |
+
thread.start()
|
113 |
+
|
114 |
+
buffer = ""
|
115 |
+
for new_text in streamer:
|
116 |
+
buffer += new_text
|
117 |
+
# Remove <|im_end|> or similar tokens from the output
|
118 |
+
buffer = buffer.replace("<|im_end|>", "")
|
119 |
+
yield buffer
|
120 |
+
|
121 |
+
def format_plain_text(output_text):
|
122 |
+
"""Formats the output text as plain text without LaTeX delimiters."""
|
123 |
+
# Remove LaTeX delimiters and convert to plain text
|
124 |
+
plain_text = output_text.replace("\\(", "").replace("\\)", "").replace("\\[", "").replace("\\]", "")
|
125 |
+
return plain_text
|
126 |
+
|
127 |
+
def generate_document(media_path, output_text, file_format, font_choice, font_size, line_spacing, alignment, image_size):
|
128 |
+
"""Generates a document with the input image and plain text output."""
|
129 |
+
plain_text = format_plain_text(output_text)
|
130 |
+
if file_format == "pdf":
|
131 |
+
return generate_pdf(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size)
|
132 |
+
elif file_format == "docx":
|
133 |
+
return generate_docx(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size)
|
134 |
+
|
135 |
+
def generate_pdf(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size):
|
136 |
+
"""Generates a PDF document."""
|
137 |
+
filename = f"output_{uuid.uuid4()}.pdf"
|
138 |
+
doc = SimpleDocTemplate(
|
139 |
+
filename,
|
140 |
+
pagesize=A4,
|
141 |
+
rightMargin=inch,
|
142 |
+
leftMargin=inch,
|
143 |
+
topMargin=inch,
|
144 |
+
bottomMargin=inch
|
145 |
+
)
|
146 |
+
styles = getSampleStyleSheet()
|
147 |
+
styles["Normal"].fontName = font_choice
|
148 |
+
styles["Normal"].fontSize = int(font_size)
|
149 |
+
styles["Normal"].leading = int(font_size) * line_spacing
|
150 |
+
styles["Normal"].alignment = {
|
151 |
+
"Left": 0,
|
152 |
+
"Center": 1,
|
153 |
+
"Right": 2,
|
154 |
+
"Justified": 4
|
155 |
+
}[alignment]
|
156 |
+
|
157 |
+
# Register font
|
158 |
+
font_path = f"font/{font_choice}"
|
159 |
+
pdfmetrics.registerFont(TTFont(font_choice, font_path))
|
160 |
+
|
161 |
+
story = []
|
162 |
+
|
163 |
+
# Add image with size adjustment
|
164 |
+
image_sizes = {
|
165 |
+
"Small": (200, 200),
|
166 |
+
"Medium": (400, 400),
|
167 |
+
"Large": (600, 600)
|
168 |
+
}
|
169 |
+
img = RLImage(media_path, width=image_sizes[image_size][0], height=image_sizes[image_size][1])
|
170 |
+
story.append(img)
|
171 |
+
story.append(Spacer(1, 12))
|
172 |
+
|
173 |
+
# Add plain text output
|
174 |
+
text = Paragraph(plain_text, styles["Normal"])
|
175 |
+
story.append(text)
|
176 |
+
|
177 |
+
doc.build(story)
|
178 |
+
return filename
|
179 |
+
|
180 |
+
def generate_docx(media_path, plain_text, font_choice, font_size, line_spacing, alignment, image_size):
|
181 |
+
"""Generates a DOCX document."""
|
182 |
+
filename = f"output_{uuid.uuid4()}.docx"
|
183 |
+
doc = docx.Document()
|
184 |
+
|
185 |
+
# Add image with size adjustment
|
186 |
+
image_sizes = {
|
187 |
+
"Small": docx.shared.Inches(2),
|
188 |
+
"Medium": docx.shared.Inches(4),
|
189 |
+
"Large": docx.shared.Inches(6)
|
190 |
+
}
|
191 |
+
doc.add_picture(media_path, width=image_sizes[image_size])
|
192 |
+
doc.add_paragraph()
|
193 |
+
|
194 |
+
# Add plain text output
|
195 |
+
paragraph = doc.add_paragraph()
|
196 |
+
paragraph.paragraph_format.line_spacing = line_spacing
|
197 |
+
paragraph.paragraph_format.alignment = {
|
198 |
+
"Left": WD_ALIGN_PARAGRAPH.LEFT,
|
199 |
+
"Center": WD_ALIGN_PARAGRAPH.CENTER,
|
200 |
+
"Right": WD_ALIGN_PARAGRAPH.RIGHT,
|
201 |
+
"Justified": WD_ALIGN_PARAGRAPH.JUSTIFY
|
202 |
+
}[alignment]
|
203 |
+
run = paragraph.add_run(plain_text)
|
204 |
+
run.font.name = font_choice
|
205 |
+
run.font.size = docx.shared.Pt(int(font_size))
|
206 |
+
|
207 |
+
doc.save(filename)
|
208 |
+
return filename
|
209 |
+
|
210 |
+
# CSS for output styling
|
211 |
+
css = """
|
212 |
+
#output {
|
213 |
+
height: 500px;
|
214 |
+
overflow: auto;
|
215 |
+
border: 1px solid #ccc;
|
216 |
+
}
|
217 |
+
.submit-btn {
|
218 |
+
background-color: #cf3434 !important;
|
219 |
+
color: white !important;
|
220 |
+
}
|
221 |
+
.submit-btn:hover {
|
222 |
+
background-color: #ff2323 !important;
|
223 |
+
}
|
224 |
+
.download-btn {
|
225 |
+
background-color: #35a6d6 !important;
|
226 |
+
color: white !important;
|
227 |
+
}
|
228 |
+
.download-btn:hover {
|
229 |
+
background-color: #22bcff !important;
|
230 |
+
}
|
231 |
+
"""
|
232 |
+
|
233 |
+
# Gradio app setup
|
234 |
+
with gr.Blocks(css=css) as demo:
|
235 |
+
gr.Markdown("# Qwen2VL Models: Vision and Language Processing")
|
236 |
+
|
237 |
+
with gr.Tab(label="Image Input"):
|
238 |
+
|
239 |
+
with gr.Row():
|
240 |
+
with gr.Column():
|
241 |
+
model_choice = gr.Dropdown(
|
242 |
+
label="Model Selection",
|
243 |
+
choices=list(MODEL_OPTIONS.keys()),
|
244 |
+
value="Latex OCR"
|
245 |
+
)
|
246 |
+
input_media = gr.File(
|
247 |
+
label="Upload Image", type="filepath"
|
248 |
+
)
|
249 |
+
text_input = gr.Textbox(label="Question", placeholder="Ask a question about the image...")
|
250 |
+
submit_btn = gr.Button(value="Submit", elem_classes="submit-btn")
|
251 |
+
|
252 |
+
with gr.Column():
|
253 |
+
output_text = gr.Textbox(label="Output Text", lines=10)
|
254 |
+
plain_text_output = gr.Textbox(label="Standardized Plain Text", lines=10)
|
255 |
+
|
256 |
+
submit_btn.click(
|
257 |
+
qwen_inference, [model_choice, input_media, text_input], [output_text]
|
258 |
+
).then(
|
259 |
+
lambda output_text: format_plain_text(output_text), [output_text], [plain_text_output]
|
260 |
+
)
|
261 |
+
|
262 |
+
# Add examples directly usable by clicking
|
263 |
+
with gr.Row():
|
264 |
+
gr.Examples(
|
265 |
+
examples=[
|
266 |
+
["examples/1.png", "summarize the letter", "Text Analogy Ocrtest"],
|
267 |
+
["examples/2.jpg", "Summarize the full image in detail", "Latex OCR"],
|
268 |
+
["examples/3.png", "Describe the photo", "Qwen2VL Base"],
|
269 |
+
["examples/4.png", "summarize and solve the problem", "Math Prase"],
|
270 |
+
],
|
271 |
+
inputs=[input_media, text_input, model_choice],
|
272 |
+
outputs=[output_text, plain_text_output],
|
273 |
+
fn=lambda img, question, model: qwen_inference(model, img, question),
|
274 |
+
cache_examples=False,
|
275 |
+
)
|
276 |
+
|
277 |
+
with gr.Row():
|
278 |
+
with gr.Column():
|
279 |
+
line_spacing = gr.Dropdown(
|
280 |
+
choices=[0.5, 1.0, 1.15, 1.5, 2.0, 2.5, 3.0],
|
281 |
+
value=1.5,
|
282 |
+
label="Line Spacing"
|
283 |
+
)
|
284 |
+
font_size = gr.Dropdown(
|
285 |
+
choices=["8", "10", "12", "14", "16", "18", "20", "22", "24"],
|
286 |
+
value="18",
|
287 |
+
label="Font Size"
|
288 |
+
)
|
289 |
+
font_choice = gr.Dropdown(
|
290 |
+
choices=[
|
291 |
+
"DejaVuMathTeXGyre.ttf",
|
292 |
+
"FiraCode-Medium.ttf",
|
293 |
+
"InputMono-Light.ttf",
|
294 |
+
"JetBrainsMono-Thin.ttf",
|
295 |
+
"ProggyCrossed Regular Mac.ttf",
|
296 |
+
"SourceCodePro-Black.ttf",
|
297 |
+
"arial.ttf",
|
298 |
+
"calibri.ttf",
|
299 |
+
"mukta-malar-extralight.ttf",
|
300 |
+
"noto-sans-arabic-medium.ttf",
|
301 |
+
"times new roman.ttf",
|
302 |
+
"ANGSA.ttf",
|
303 |
+
"Book-Antiqua.ttf",
|
304 |
+
"CONSOLA.TTF",
|
305 |
+
"COOPBL.TTF",
|
306 |
+
"Rockwell-Bold.ttf",
|
307 |
+
"Candara Light.TTF",
|
308 |
+
"Carlito-Regular.ttf Carlito-Regular.ttf",
|
309 |
+
"Castellar.ttf",
|
310 |
+
"Courier New.ttf",
|
311 |
+
"LSANS.TTF",
|
312 |
+
"Lucida Bright Regular.ttf",
|
313 |
+
"TRTempusSansITC.ttf",
|
314 |
+
"Verdana.ttf",
|
315 |
+
"bell-mt.ttf",
|
316 |
+
"eras-itc-light.ttf",
|
317 |
+
"fonnts.com-aptos-light.ttf",
|
318 |
+
"georgia.ttf",
|
319 |
+
"segoeuithis.ttf",
|
320 |
+
"youyuan.TTF",
|
321 |
+
"TfPonetoneExpanded-7BJZA.ttf",
|
322 |
+
],
|
323 |
+
value="youyuan.TTF",
|
324 |
+
label="Font Choice"
|
325 |
+
)
|
326 |
+
alignment = gr.Dropdown(
|
327 |
+
choices=["Left", "Center", "Right", "Justified"],
|
328 |
+
value="Justified",
|
329 |
+
label="Text Alignment"
|
330 |
+
)
|
331 |
+
image_size = gr.Dropdown(
|
332 |
+
choices=["Small", "Medium", "Large"],
|
333 |
+
value="Small",
|
334 |
+
label="Image Size"
|
335 |
+
)
|
336 |
+
file_format = gr.Radio(["pdf", "docx"], label="File Format", value="pdf")
|
337 |
+
get_document_btn = gr.Button(value="Get Document", elem_classes="download-btn")
|
338 |
+
|
339 |
+
get_document_btn.click(
|
340 |
+
generate_document, [input_media, output_text, file_format, font_choice, font_size, line_spacing, alignment, image_size], gr.File(label="Download Document")
|
341 |
+
)
|
342 |
+
|
343 |
+
demo.launch(debug=True)
|