prithivMLmods commited on
Commit
c68b34d
·
verified ·
1 Parent(s): fa4176e

Create augmented_waste_classifier.py

Browse files
Files changed (1) hide show
  1. augmented_waste_classifier.py +45 -0
augmented_waste_classifier.py ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ from transformers import AutoImageProcessor
4
+ from transformers import SiglipForImageClassification
5
+ from transformers.image_utils import load_image
6
+ from PIL import Image
7
+ import torch
8
+
9
+ # Load model and processor
10
+ model_name = "prithivMLmods/Augmented-Waste-Classifier-SigLIP2"
11
+ model = SiglipForImageClassification.from_pretrained(model_name)
12
+ processor = AutoImageProcessor.from_pretrained(model_name)
13
+
14
+ @spaces.GPU
15
+ def waste_classification(image):
16
+ """Predicts waste classification for an image."""
17
+ image = Image.fromarray(image).convert("RGB")
18
+ inputs = processor(images=image, return_tensors="pt")
19
+
20
+ with torch.no_grad():
21
+ outputs = model(**inputs)
22
+ logits = outputs.logits
23
+ probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
24
+
25
+ labels = {
26
+ "0": "Battery", "1": "Biological", "2": "Cardboard", "3": "Clothes",
27
+ "4": "Glass", "5": "Metal", "6": "Paper", "7": "Plastic",
28
+ "8": "Shoes", "9": "Trash"
29
+ }
30
+ predictions = {labels[str(i)]: round(probs[i], 3) for i in range(len(probs))}
31
+
32
+ return predictions
33
+
34
+ # Create Gradio interface
35
+ iface = gr.Interface(
36
+ fn=waste_classification,
37
+ inputs=gr.Image(type="numpy"),
38
+ outputs=gr.Label(label="Prediction Scores"),
39
+ title="Augmented Waste Classification",
40
+ description="Upload an image to classify the type of waste."
41
+ )
42
+
43
+ # Launch the app
44
+ if __name__ == "__main__":
45
+ iface.launch()