Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,6 +6,7 @@ from deepfake_vs_real import deepfake_classification
|
|
6 |
from gym_workout_classification import workout_classification
|
7 |
from augmented_waste_classifier import waste_classification
|
8 |
from age_classification import age_classification
|
|
|
9 |
|
10 |
# Main classification function that calls the appropriate model based on selection.
|
11 |
def classify(image, model_name):
|
@@ -23,37 +24,24 @@ def classify(image, model_name):
|
|
23 |
return waste_classification(image)
|
24 |
elif model_name == "age":
|
25 |
return age_classification(image)
|
|
|
|
|
26 |
else:
|
27 |
return {"Error": "No model selected"}
|
28 |
|
29 |
# Function to update the selected model and button styles.
|
30 |
def select_model(model_name):
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
waste_variant = "primary" if model_name == "waste" else "secondary"
|
38 |
-
age_variant = "primary" if model_name == "age" else "secondary"
|
39 |
-
# Return new state and update objects for each button in the specified order.
|
40 |
-
return (
|
41 |
-
model_name,
|
42 |
-
gr.update(variant=gender_variant),
|
43 |
-
gr.update(variant=emotion_variant),
|
44 |
-
gr.update(variant=dog_breed_variant),
|
45 |
-
gr.update(variant=deepfake_variant),
|
46 |
-
gr.update(variant=gym_workout_variant),
|
47 |
-
gr.update(variant=waste_variant),
|
48 |
-
gr.update(variant=age_variant)
|
49 |
-
)
|
50 |
|
51 |
with gr.Blocks() as demo:
|
52 |
-
# Sidebar with title and model selection buttons.
|
53 |
with gr.Sidebar():
|
54 |
gr.Markdown("# SigLIP2 224")
|
55 |
with gr.Row():
|
56 |
-
# Initialize buttons with variants. Default is "age" set to primary.
|
57 |
age_btn = gr.Button("Age Classification", variant="primary")
|
58 |
gender_btn = gr.Button("Gender Classification", variant="secondary")
|
59 |
emotion_btn = gr.Button("Emotion Classification", variant="secondary")
|
@@ -61,44 +49,23 @@ with gr.Blocks() as demo:
|
|
61 |
deepfake_btn = gr.Button("Deepfake vs Real", variant="secondary")
|
62 |
gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary")
|
63 |
waste_btn = gr.Button("Waste Classification", variant="secondary")
|
64 |
-
|
65 |
-
|
66 |
selected_model = gr.State("age")
|
67 |
-
|
68 |
gr.Markdown("### Current Model:")
|
69 |
model_display = gr.Textbox(value="age", interactive=False)
|
70 |
-
# Update display when state changes.
|
71 |
selected_model.change(lambda m: m, selected_model, model_display)
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
|
80 |
-
dog_breed_btn.click(fn=lambda: select_model("dog breed"),
|
81 |
-
inputs=[],
|
82 |
-
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
|
83 |
-
deepfake_btn.click(fn=lambda: select_model("deepfake"),
|
84 |
-
inputs=[],
|
85 |
-
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
|
86 |
-
gym_workout_btn.click(fn=lambda: select_model("gym workout"),
|
87 |
-
inputs=[],
|
88 |
-
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
|
89 |
-
waste_btn.click(fn=lambda: select_model("waste"),
|
90 |
-
inputs=[],
|
91 |
-
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
|
92 |
-
age_btn.click(fn=lambda: select_model("age"),
|
93 |
-
inputs=[],
|
94 |
-
outputs=[selected_model, gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn])
|
95 |
-
|
96 |
-
# Main interface: image input, analyze button, and prediction output.
|
97 |
with gr.Column():
|
98 |
image_input = gr.Image(type="numpy", label="Upload Image")
|
99 |
analyze_btn = gr.Button("Classify / Predict")
|
100 |
output_label = gr.Label(label="Prediction Scores")
|
101 |
-
# When the "Analyze" button is clicked, use the selected model to classify the image.
|
102 |
analyze_btn.click(fn=classify, inputs=[image_input, selected_model], outputs=output_label)
|
103 |
|
104 |
demo.launch()
|
|
|
6 |
from gym_workout_classification import workout_classification
|
7 |
from augmented_waste_classifier import waste_classification
|
8 |
from age_classification import age_classification
|
9 |
+
from mnist_digits import classify_digit
|
10 |
|
11 |
# Main classification function that calls the appropriate model based on selection.
|
12 |
def classify(image, model_name):
|
|
|
24 |
return waste_classification(image)
|
25 |
elif model_name == "age":
|
26 |
return age_classification(image)
|
27 |
+
elif model_name == "mnist":
|
28 |
+
return classify_digit(image)
|
29 |
else:
|
30 |
return {"Error": "No model selected"}
|
31 |
|
32 |
# Function to update the selected model and button styles.
|
33 |
def select_model(model_name):
|
34 |
+
model_variants = {
|
35 |
+
"gender": "secondary", "emotion": "secondary", "dog breed": "secondary", "deepfake": "secondary",
|
36 |
+
"gym workout": "secondary", "waste": "secondary", "age": "secondary", "mnist": "secondary"
|
37 |
+
}
|
38 |
+
model_variants[model_name] = "primary"
|
39 |
+
return (model_name, *(gr.update(variant=model_variants[key]) for key in model_variants))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
with gr.Blocks() as demo:
|
|
|
42 |
with gr.Sidebar():
|
43 |
gr.Markdown("# SigLIP2 224")
|
44 |
with gr.Row():
|
|
|
45 |
age_btn = gr.Button("Age Classification", variant="primary")
|
46 |
gender_btn = gr.Button("Gender Classification", variant="secondary")
|
47 |
emotion_btn = gr.Button("Emotion Classification", variant="secondary")
|
|
|
49 |
deepfake_btn = gr.Button("Deepfake vs Real", variant="secondary")
|
50 |
gym_workout_btn = gr.Button("Gym Workout Classification", variant="secondary")
|
51 |
waste_btn = gr.Button("Waste Classification", variant="secondary")
|
52 |
+
mnist_btn = gr.Button("MNIST Digit Classification", variant="secondary")
|
53 |
+
|
54 |
selected_model = gr.State("age")
|
|
|
55 |
gr.Markdown("### Current Model:")
|
56 |
model_display = gr.Textbox(value="age", interactive=False)
|
|
|
57 |
selected_model.change(lambda m: m, selected_model, model_display)
|
58 |
|
59 |
+
buttons = [gender_btn, emotion_btn, dog_breed_btn, deepfake_btn, gym_workout_btn, waste_btn, age_btn, mnist_btn]
|
60 |
+
model_names = ["gender", "emotion", "dog breed", "deepfake", "gym workout", "waste", "age", "mnist"]
|
61 |
+
|
62 |
+
for btn, name in zip(buttons, model_names):
|
63 |
+
btn.click(fn=lambda n=name: select_model(n), inputs=[], outputs=[selected_model] + buttons)
|
64 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
with gr.Column():
|
66 |
image_input = gr.Image(type="numpy", label="Upload Image")
|
67 |
analyze_btn = gr.Button("Classify / Predict")
|
68 |
output_label = gr.Label(label="Prediction Scores")
|
|
|
69 |
analyze_btn.click(fn=classify, inputs=[image_input, selected_model], outputs=output_label)
|
70 |
|
71 |
demo.launch()
|